The evolution of photosynthesis in chromist algae through serial endosymbioses

被引:117
作者
Stiller, John W. [1 ]
Schreiber, John [1 ]
Yue, Jipei [1 ]
Guo, Hui [2 ]
Ding, Qin [2 ]
Huang, Jinling [1 ]
机构
[1] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA
[2] E Carolina Univ, Dept Comp Sci, Greenville, NC 27858 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
PHYLOGENOMIC EVIDENCE; PLASTID EVOLUTION; COMPLEX ALGAE; GENE-TRANSFER; RED PLASTIDS; CRYPTOPHYTES; HAPTOPHYTES; ORIGIN; GENOMES; DINOFLAGELLATE;
D O I
10.1038/ncomms6764
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity.
引用
收藏
页数:7
相关论文
共 46 条
[11]   EUKARYOTE KINGDOMS - 7 OR 9 [J].
CAVALIERSMITH, T .
BIOSYSTEMS, 1981, 14 (3-4) :461-481
[12]  
CHADEFAUD M, 1950, CR HEBD ACAD SCI, V231, P788
[13]  
Cook R. D., 1982, RESIDUALS INFLUENCE
[14]  
Delwiche C. F., 1997, ORIGINS ALGAE THEIR, V11, P53
[15]   Reevaluating the Green Contribution to Diatom Genomes [J].
Deschamps, Philippe ;
Moreira, David .
GENOME BIOLOGY AND EVOLUTION, 2012, 4 (07) :795-800
[16]   Plastid evolution [J].
Gould, Sven B. ;
Waller, Ross R. ;
McFadden, Geoffrey I. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :491-517
[17]   New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0 [J].
Guindon, Stephane ;
Dufayard, Jean-Francois ;
Lefort, Vincent ;
Anisimova, Maria ;
Hordijk, Wim ;
Gascuel, Olivier .
SYSTEMATIC BIOLOGY, 2010, 59 (03) :307-321
[18]   The Number, Speed, and Impact of Plastid Endosymbioses in Eukaryotic Evolution [J].
Keeling, Patrick J. .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 64, 2013, 64 :583-607
[19]   The eukaryotic tree of life: endosymbiosis takes its TOL [J].
Lane, Christopher E. ;
Archibald, John M. .
TRENDS IN ECOLOGY & EVOLUTION, 2008, 23 (05) :268-275
[20]   Heterotachy and tree building: A case study with plastids and eubacteria [J].
Lockhart, P ;
Novis, P ;
Milligan, BG ;
Riden, J ;
Rambaut, A ;
Larkum, T .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (01) :40-45