Actions of cocommutative Hopf algebras

被引:3
作者
Lorenz, Martin [1 ]
Nguyen, Bach [1 ]
Yammine, Ramy [1 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
关键词
Hopf algebra; Action; Quantum invariant theory; Prime spectrum; Stratification; Prime ideal; Semiprime ideal; Integral action; Rational action; Algebraic group; Lie algebra; Derivation;
D O I
10.1016/j.jalgebra.2019.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a cocommutative Hopf algebra acting on an algebra A. Assuming the base field to be algebraically closed and the H-action on A to be integral, that is, it is given by a coaction of some Hopf subalgebra of the finite dual H degrees that is an integral domain, we stratify the prime spectrum Spec A in terms of the prime spectra of certain commutative algebras. For arbitrary H-actions in characteristic 0, we show that the largest H-stable ideal of A that is contained in a given semiprime ideal of A is semiprime as well. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:703 / 722
页数:20
相关论文
共 20 条
[1]   Finite generation of symmetric ideals [J].
Aschenbrenner, Matthias ;
Hillar, Christopher J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5171-5192
[2]   JORDAN HOMOMORPHISMS OF SEMIPRIME RINGS [J].
BAXTER, WE ;
MARTINDALE, WS .
JOURNAL OF ALGEBRA, 1979, 56 (02) :457-471
[3]  
Bourbaki Nicolas, 1972, 37 ACT SCI IND HERM, V1349
[4]  
Bourbaki Nicolas, 1970, 432 MR
[5]   SMASH PRODUCTS, INNER ACTIONS AND QUOTIENT-RINGS [J].
COHEN, M .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 125 (01) :45-66
[6]  
Dixmier Jacques, 1996, GRADUATE STUDIES MAT, V11
[7]   The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras [J].
Goodearl, KR ;
Letzter, ES .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (03) :1381-1403
[8]  
Harcenko V. K., 1978, ALGEBRA LOGIKA+, V17, P491
[9]  
Hochschild G. P., 1981, Grad. Texts in Math., V75
[10]  
Kharchenko Vladislav K., 1978, ALGEBRA LOGIKA+, V17, P491