Confining the state of light to a quantum manifold by engineered two-photon loss

被引:429
作者
Leghtas, Z. [1 ]
Touzard, S. [1 ]
Pop, I. M. [1 ]
Kou, A. [1 ]
Vlastakis, B. [1 ]
Petrenko, A. [1 ]
Sliwa, K. M. [1 ]
Narla, A. [1 ]
Shankar, S. [1 ]
Hatridge, M. J. [1 ]
Reagor, M. [1 ]
Frunzio, L. [1 ]
Schoelkopf, R. J. [1 ]
Mirrahimi, M. [1 ,2 ]
Devoret, M. H. [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[2] Inst Natl Rech Informat & Automat INRIA Paris Roc, F-78153 Le Chesnay, France
关键词
SINGLE-PHOTON; NOISE;
D O I
10.1126/science.aaa2085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrodinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information inmultidimensional steady-state manifolds.
引用
收藏
页码:853 / 857
页数:5
相关论文
共 28 条
[11]   Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects [J].
Krauter, Hanna ;
Muschik, Christine A. ;
Jensen, Kasper ;
Wasilewski, Wojciech ;
Petersen, Jonas M. ;
Cirac, J. Ignacio ;
Polzik, Eugene S. .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)
[12]   Dissipative production of a maximally entangled steady state of two quantum bits [J].
Lin, Y. ;
Gaebler, J. P. ;
Reiter, F. ;
Tan, T. R. ;
Bowler, R. ;
Sorensen, A. S. ;
Leibfried, D. ;
Wineland, D. J. .
NATURE, 2013, 504 (7480) :415-+
[13]   Method for direct measurement of the Wigner function in cavity QED and ion traps [J].
Lutterbach, LG ;
Davidovich, L .
PHYSICAL REVIEW LETTERS, 1997, 78 (13) :2547-2550
[14]   Dynamically protected cat-qubits: a new paradigm for universal quantum computation [J].
Mirrahimi, Mazyar ;
Leghtas, Zaki ;
Albert, Victor V. ;
Touzard, Steven ;
Schoelkopf, Robert J. ;
Jiang, Liang ;
Devoret, Michel H. .
NEW JOURNAL OF PHYSICS, 2014, 16
[15]   A ''Schrodinger cat'' superposition state of an atom [J].
Monroe, C ;
Meekhof, DM ;
King, BE ;
Wineland, DJ .
SCIENCE, 1996, 272 (5265) :1131-1136
[16]   Cavity-Assisted Quantum Bath Engineering [J].
Murch, K. W. ;
Vool, U. ;
Zhou, D. ;
Weber, S. J. ;
Girvin, S. M. ;
Siddiqi, I. .
PHYSICAL REVIEW LETTERS, 2012, 109 (18)
[17]   Generation of optical "Schrodinger cats' from photon number states [J].
Ourjoumtsev, Alexei ;
Jeong, Hyunseok ;
Tualle-Brouri, Rosa ;
Grangier, Philippe .
NATURE, 2007, 448 (7155) :784-786
[18]   Feedback Control of a Solid-State Qubit Using High-Fidelity Projective Measurement [J].
Riste, D. ;
Bultink, C. C. ;
Lehnert, K. W. ;
DiCarlo, L. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[19]   Real-time quantum feedback prepares and stabilizes photon number states [J].
Sayrin, Clement ;
Dotsenko, Igor ;
Zhou, Xingxing ;
Peaudecerf, Bruno ;
Rybarczyk, Theo ;
Gleyzes, Sebastien ;
Rouchon, Pierre ;
Mirrahimi, Mazyar ;
Amini, Hadis ;
Brune, Michel ;
Raimond, Jean-Michel ;
Haroche, Serge .
NATURE, 2011, 477 (7362) :73-77
[20]   Resolving photon number states in a superconducting circuit [J].
Schuster, D. I. ;
Houck, A. A. ;
Schreier, J. A. ;
Wallraff, A. ;
Gambetta, J. M. ;
Blais, A. ;
Frunzio, L. ;
Majer, J. ;
Johnson, B. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2007, 445 (7127) :515-518