On nonparametric density estimation for multivariate linear long-memory processes

被引:3
|
作者
Beran, Jan [1 ]
Telkmann, Klaus [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
关键词
Kernel density estimation; Linear process; Long-range dependence; Multivariate; Multivariate time series; 62G07; 62H12; 62M09; 62M10; RANGE DEPENDENT SEQUENCES; VERVAAT ERROR PROCESSES; BANDWIDTH SELECTION; EMPIRICAL PROCESS; WEAK-CONVERGENCE; BAHADUR-KIEFER; LIMIT-THEOREMS; PRINCIPLES;
D O I
10.1080/03610926.2017.1395048
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonparametric estimation of the density function and its derivatives for multivariate linear processes with long-range dependence. In a first step, the asymptotic distribution of the multivariate empirical process is derived. In a second step, the asymptotic distribution of kernel density estimators and their derivatives is obtained.
引用
收藏
页码:5460 / 5473
页数:14
相关论文
共 50 条