Universal shocks in random matrix theory

被引:22
作者
Blaizot, Jean-Paul [1 ]
Nowak, Maciej A. [2 ,3 ]
机构
[1] CEA Saclay, IPTh, F-91191 Gif Sur Yvette, France
[2] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[3] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, PL-30059 Krakow, Poland
关键词
QCD DIRAC OPERATOR; CHARACTERISTIC-POLYNOMIALS; SPECTRAL DENSITY; BURGERS-EQUATION;
D O I
10.1103/PhysRevE.82.051115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We link the appearance of universal kernels in random matrix ensembles to the phenomenon of shock formation in some fluid dynamical equations. Such equations are derived from Dyson's random walks after a proper rescaling of the time. In the case of the Gaussian unitary ensemble, on which we focus in this paper, we show that the characteristics polynomials and their inverse evolve according to a viscid Burgers equation with an effective "spectral viscosity" nu(s) = 1/2N, where N is the size of the matrices. We relate the edge of the spectrum of eigenvalues to the shock that naturally appears in the Burgers equation for appropriate initial conditions, thereby suggesting a connection between the well-known microscopic universality of random matrix theory and the universal properties of the solution of the Burgers equation in the vicinity of a shock.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Universal random matrix correlations of ratios of characteristic polynomials at the spectral edges [J].
Akemann, G ;
Fyodorov, Y .
NUCLEAR PHYSICS B, 2003, 664 (03) :457-476
[2]   SCALING THEORY OF CONDUCTION THROUGH A NORMAL-SUPERCONDUCTOR MICROBRIDGE [J].
BEENAKKER, CWJ ;
REJAEI, B ;
MELSEN, JA .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2470-2473
[3]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[4]   Colored diffraction catastrophes [J].
Berry, MV ;
Klein, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (06) :2614-2619
[5]  
BESSIS D, 1984, J PHYS LETT-PARIS, V45, pL833, DOI 10.1051/jphyslet:019840045017083300
[6]   Free diffusions, free entropy and free Fisher information [J].
Biane, P ;
Speicher, R .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (05) :581-606
[7]  
Blaizot JP, 2009, ACTA PHYS POL B, V40, P3321
[8]   Large-Nc confinement and turbulence [J].
Blaizot, Jean-Paul ;
Nowak, Maciej A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (10)
[9]   Characteristic polynomials of random matrices [J].
Brézin, E ;
Hikami, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :111-135
[10]   Universal singularity at the closure of a gap in a random matrix theory [J].
Brezin, E ;
Hikami, S .
PHYSICAL REVIEW E, 1998, 57 (04) :4140-4149