Quantitative Top-Down Proteomics by Isobaric Labeling with Thiol-Directed Tandem Mass Tags

被引:23
作者
Winkels, Konrad [1 ]
Koudelka, Tomas [1 ]
Tholey, Andreas [1 ]
机构
[1] Christian Albrechts Univ Kiel, Systemat Proteome Res & Bioanalyt, Inst Expt Med, D-24105 Kiel, Germany
关键词
GElFrEE; isobaric labeling; LC-MS; post-translational modification; proteoform; proteolytic processing; quantitative proteomics; tandem mass tag; terminomics; PROTEIN QUANTITATION; ENABLES ACCURATE; QUANTIFICATION; PROTEOFORM; SPECTROMETRY; IDENTIFICATION; ELECTROPHORESIS; EXPRESSION; RANGE;
D O I
10.1021/acs.jproteome.1c00460
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
While identification-centric (qualitative) top-down proteomics (TDP) has seen rapid progress in the recent past, the quantification of intact proteoforms within complex proteomes is still challenging. The by far mostly applied approach is label-free quantification, which, however, provides limited multiplexing capacity, and its use in combination with multidimensional separation is encountered with a number of problems. Isobaric labeling, which is a standard quantification approach in bottom-up proteomics, circumvents these limitations. Here, we introduce the application of thiol-directed isobaric labeling for quantitative TDP. For this purpose, we analyzed the labeling efficiency and optimized tandem mass spectrometry parameters for optimal backbone fragmentation for identification and reporter ion formation for quantification. Two different separation schemes, gel-eluted liquid fraction entrapment electrophoresis x liquid chromatography-mass spectrometry (LC-MS) and high/low-pH LC-MS, were employed for the analyses of either Escherichia coli (E. coli) proteomes or combined E. coli/yeast samples (two-proteome interference model) to study potential ratio compression. While the thiol-directed labeling introduces a bias in the quantifiable proteoforms, being restricted to Cys-containing proteoforms, our approach showed excellent accuracy in quantification, which is similar to that achievable in bottom-up proteomics. For example, 876 proteoforms could be quantified with high accuracy in an E. coli lysate. The LC-MS data were deposited to the ProteomeXchange with the dataset identifier PXD026310.
引用
收藏
页码:4495 / 4506
页数:12
相关论文
共 64 条
  • [31] A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements
    Pfammatter, Sibylle
    Bonneil, Eric
    McManus, Francis P.
    Prasad, Satendra
    Bailey, Derek J.
    Belford, Michael
    Dunyach, Jean-Jacques
    Thibault, Pierre
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2018, 17 (10) : 2051 - 2067
  • [32] Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics
    Prudova, Anna
    Keller, Ulrich Auf Dem
    Butler, Georgina S.
    Overall, Christopher M.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (05) : 894 - 911
  • [33] Proteomic Quantification and Site-Mapping of S-Nitrosylated Proteins Using Isobaric iodoTMT Reagents
    Qu, Zhe
    Meng, Fanjun
    Bomgarden, Ryan D.
    Viner, Rosa I.
    Li, Jilong
    Rogers, John C.
    Cheng, Jianlin
    Greenlief, C. Michael
    Cui, Jiankun
    Lubahn, Dennis B.
    Sun, Grace Y.
    Gu, Zezong
    [J]. JOURNAL OF PROTEOME RESEARCH, 2014, 13 (07) : 3200 - 3211
  • [34] Heavy Sugar and Heavy Water Create Tunable Intact Protein Mass Increases for Quantitative Mass Spectrometry in Any Feed and Organism
    Quijada, Jeniffer V.
    Schmitt, Nicholas D.
    Salisbury, Joseph P.
    Auclair, Jared R.
    Agar, Jeffrey N.
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (22) : 11139 - 11146
  • [35] Neutron-Encoded Mass Signatures for Quantitative Top-Down Proteomics
    Rhoads, Timothy W.
    Rose, Christopher M.
    Bailey, Derek J.
    Riley, Nicholas M.
    Molden, Rosalynn C.
    Nestler, Amelia J.
    Merrill, Anna E.
    Smith, Lloyd M.
    Hebert, Alexander S.
    Westphall, Michael S.
    Pagliarini, David J.
    Garcia, Benjamin A.
    Coon, Joshua J.
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (05) : 2314 - 2319
  • [36] Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents
    Ross, PL
    Huang, YLN
    Marchese, JN
    Williamson, B
    Parker, K
    Hattan, S
    Khainovski, N
    Pillai, S
    Dey, S
    Daniels, S
    Purkayastha, S
    Juhasz, P
    Martin, S
    Bartlet-Jones, M
    He, F
    Jacobson, A
    Pappin, DJ
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (12) : 1154 - 1169
  • [37] Liquid Extraction Surface Analysis Mass Spectrometry Coupled with Field Asymmetric Waveform Ion Mobility Spectrometry for Analysis of Intact Proteins from Biological Substrates
    Sarsby, Joscelyn
    Griffiths, Rian L.
    Race, Alan M.
    Bunch, Josephine
    Randall, Elizabeth C.
    Creese, Andrew J.
    Cooper, Helen J.
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (13) : 6794 - 6800
  • [38] Mass Spectrometric Profiling of Neuropeptides in Response to Copper Toxicity via Isobaric Tagging
    Sauer, Christopher S.
    Li, Lingjun
    [J]. CHEMICAL RESEARCH IN TOXICOLOGY, 2021, 34 (05) : 1329 - 1336
  • [39] Measuring and Managing Ratio Compression for Accurate iTRAQ/TMT Quantification
    Savitski, Mikhail M.
    Mathieson, Toby
    Zinn, Nico
    Sweetman, Gavain
    Doce, Carola
    Becher, Isabelle
    Pachl, Fiona
    Kuster, Bernhard
    Bantscheff, Marcus
    [J]. JOURNAL OF PROTEOME RESEARCH, 2013, 12 (08) : 3586 - 3598
  • [40] Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms
    Schaffer, Leah V.
    Tucholski, Trisha
    Shortreed, Michael R.
    Ge, Ying
    Smith, Lloyd M.
    [J]. ANALYTICAL CHEMISTRY, 2019, 91 (17) : 10937 - 10942