One-dimensional hierarchical titania for fast reaction kinetics of photoanode materials of dye-sensitized solar cells

被引:71
作者
Qu, J. [1 ]
Li, G. R. [1 ]
Gao, X. P. [1 ]
机构
[1] Nankai Univ, Inst New Energy Chem Mat, Tianjin Key Lab Met & Mol Based Mat Chem, Tianjin 300071, Peoples R China
关键词
EQUIVALENT-CIRCUIT; NANOWIRES; ARRAYS; NANOTUBES; NANORODS; FILMS;
D O I
10.1039/c003646c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To overcome kinetic limitations of nanoparticles and one-dimensional nanostructures, and enhance fast reaction kinetics of photoanode materials for dye-sensitized solar cells, one-dimensional hierarchical titanate was prepared by coating protonated titanate nanoparticles on one-dimensional protonated titanate nanorods. The one-dimensional hierarchical titania was obtained subsequently after calcination at different temperatures, and was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET). The photoelectrochemical and electrochemical performance of the one-dimensional hierarchical titania was then carried out by photocurrent-voltage curves, electrochemical impedance spectroscopy (EIS), intensity-modulated photovoltage spectroscopy (IMVS) and intensity-modulated photocurrent spectroscopy (IMPS). It is clear that titania nanoparticles grow uniformly on the surface of titania nanorods. The one-dimensional hierarchical titania obtained subsequently can not only provide a matrix similar to the hybrid structure matrix but also avoid forming a large amount of grain boundaries, since the hierarchical structure forms by growth of nanoparticles on nanorods. In particular, the titania with such hierarchical structures after calcination at 600 and 700 degrees C show optimized fast reaction kinetics: low charge-transfer resistance, fast electron transport and long electron lifetime. The knowledge acquired in this work is important for the design of efficient photoanode materials of dye-sensitized solar cells.
引用
收藏
页码:2003 / 2009
页数:7
相关论文
共 40 条
[1]   Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy [J].
Adachi, Motonari ;
Sakamoto, Masaru ;
Jiu, Jinting ;
Ogata, Yukio ;
Isoda, Seiji .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28) :13872-13880
[2]   Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires [J].
Baxter, JB ;
Aydil, ES .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (05) :607-622
[3]   An equivalent circuit approach to the modelling of the dynamics of dye sensitized solar cells [J].
Bay, L ;
West, K .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :613-628
[4]   An electrochemical study on the nature of trap states in nanocrystalline rutile thin films [J].
Berger, Thomas ;
Lana-Villarreal, Teresa ;
Monllor-Satoca, Damian ;
Gomez, Roberto .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (27) :9936-9942
[5]   Potential applications of hierarchical branching nanowires in solar energy conversion [J].
Bierman, Matthew J. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (10) :1050-1059
[6]  
CHEN D, 2009, ADV MATER, V21, P1
[7]   Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer [J].
Chuangchote, Surawut ;
Sagawa, Takashi ;
Yoshikawa, Susumu .
APPLIED PHYSICS LETTERS, 2008, 93 (03)
[8]   Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells [J].
Enache-Pommer, Emil ;
Boercker, Janice E. ;
Aydil, Eray S. .
APPLIED PHYSICS LETTERS, 2007, 91 (12)
[9]   Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications [J].
Feng, Xinjian ;
Shankar, Karthik ;
Varghese, Oomman K. ;
Paulose, Maggie ;
Latempa, Thomas J. ;
Grimes, Craig A. .
NANO LETTERS, 2008, 8 (11) :3781-3786
[10]   Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review [J].
Gonzalez-Valls, Irene ;
Lira-Cantu, Monica .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :19-34