Lipid constituents of model protocell membranes

被引:28
|
作者
Wang, Anna [1 ]
Szostak, Jack W. [2 ,3 ]
机构
[1] UNSW Sydney, Sch Chem, Sydney, NSW 2052, Australia
[2] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Boston, MA 02114 USA
关键词
CHAIN FATTY-ACIDS; OLEIC-ACID; MONOCARBOXYLIC ACIDS; VESICLES; LONG; BILAYER; AMPHIPHILES; STABILITY; ALCOHOLS; PK(A);
D O I
10.1042/ETLS20190021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Primitive life must have possessed the essential features of modern cellular life, but without highly evolved proteins to perform dynamic functions such as nutrient transport and membrane remodeling. Here, we consider the membrane properties of protocells - minimal cells with hereditary material, capable of growth and division - and how these properties place restrictions on the components of the membrane. For example, the lipids of modern membranes are diacyl amphiphilic molecules containing well-over 20 carbons in total. Without proteins, these membranes are very stable and kinetically trapped. This inertness, combined with the need for enzymes to synthesize them, makes modern diacyl amphiphiles unsuitable candidates for the earliest membranes on Earth. We, therefore, discuss the progress made thus far with single-chained amphiphiles, including fatty acids and mixtures of fatty acids with related molecules, and the membrane-related research that must be undertaken to gain more insight into the origins of cellular life.
引用
收藏
页码:537 / 542
页数:6
相关论文
共 50 条
  • [31] Compositional heterogeneity confers selective advantage to model protocellular membranes during the origins of cellular life
    Sarkar, Susovan
    Dagar, Shikha
    Verma, Ajay
    Rajamani, Sudha
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [32] Interactions between Catalysts and Amphiphilic Structures and their Implications for a Protocell Model
    Maurer, Sarah E.
    DeClue, Michael S.
    Albertsen, Anders N.
    Dorr, Mark
    Kuiper, David S.
    Ziock, Hans
    Rasmussen, Steen
    Boncella, James M.
    Monnard, Pierre-Alain
    CHEMPHYSCHEM, 2011, 12 (04) : 828 - 835
  • [33] Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts
    Kardash, Maria E.
    Dzuba, Sergei A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (20) : 5209 - 5217
  • [34] Diffusion in Low-Dimensional Lipid Membranes
    Heath, George R.
    Roth, Johannes
    Connell, Simon D.
    Evans, Stephen D.
    NANO LETTERS, 2014, 14 (10) : 5984 - 5988
  • [35] Nanoparticle-Engendered Rupture of Lipid Membranes
    Burgess, Sean
    Vishnyakov, Aleksey
    Tsovko, Christopher
    Neimark, Alexander V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (17): : 4872 - 4877
  • [36] Effect of phosphorus dendrimers on DMPC lipid membranes
    Ionov, Maksim
    Wrobel, Dominika
    Gardikis, Konstantinos
    Hatziantoniou, Sophia
    Demetzos, Costas
    Majoral, Jean-Pierre
    Klajnert, Barbara
    Bryszewska, Maria
    CHEMISTRY AND PHYSICS OF LIPIDS, 2012, 165 (04) : 408 - 413
  • [37] The Role of Lipid Membranes in Life's Origin
    Deamer, David
    LIFE-BASEL, 2017, 7 (01):
  • [38] Polymer-Tethered Bimolecular Lipid Membranes
    Knoll, Wolfgang
    Bender, Katja
    Foerch, Renate
    Frank, Curt
    Goetz, Heide
    Heibel, Claudia
    Jenkins, Toby
    Jonas, Ulrich
    Kibrom, Asmorom
    Kuegler, Ralf
    Naumann, Christoph
    Naumann, Renate
    Reisinger, Annette
    Ruehe, Juergen
    Schiller, Stefan
    Sinner, Eva-Kathrin
    POLYMER MEMBRANES/BIOMEMBRANES, 2010, 224 : 87 - 111
  • [39] Hydrostatic Pressure Promotes Domain Formation in Model Lipid Raft Membranes
    Worcester, David L.
    Weinrich, Michael
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (21): : 4417 - 4421
  • [40] Need for more focus on lipid species in studies of biological and model membranes
    Skotland, Tore
    Sandvig, Kirsten
    PROGRESS IN LIPID RESEARCH, 2022, 86