Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials

被引:46
作者
Yao, Haiyun [1 ]
Yan, Xin [1 ]
Yang, Maosheng [1 ,2 ]
Yang, Qili [1 ]
Liu, Yunyun [1 ]
Li, Aiyun [1 ]
Wang, Meng [1 ]
Wei, Dequan [1 ]
Tian, Zhongjun [1 ]
Liang, Lanju [1 ]
机构
[1] Zao Zhuang Univ, Sch Optoelect Engn, Zao Zhuang 277160, Peoples R China
[2] Jiangsu Univ, Inst Micronano Optoelect & Terahertz Technol, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
THz dynamic modulation; Frequency-dependent; Graphene; Dirac point; Metamaterials; LIGHT; FIELD; CONDUCTIVITY; METASURFACES; ULTRAFAST;
D O I
10.1016/j.carbon.2021.08.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of terahertz (THz) technology is creating a demand for devices that can modulate THz beams. Here, we report the design and characterization of three THz modulators. One uses graphene and a metal-microstructure-integrated metamaterial, another uses a bare graphene film, and the third uses graphene-based all-dielectric metamaterials. Ultrasensitive dynamic THz modulation is achieved by shifting the quasi-Fermi level between the Dirac point, the conduction band, and the valence of graphene via continuous-wave optical illumination or bias voltages. When the Fermi level is close to the Dirac point, the modulation is ultrasensitive to the external stimuli. The modulation depth can reach the maximum value of 346% in the current public publication, breaking through the bottleneck of modulation inefficiency, and is expected to realize practical applications for the first time. For the range 0.2-2 THz, the modulation depth initially increases, then decreases. These results will enable potential designs for ultrasensitive THz devices. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:400 / 408
页数:9
相关论文
共 68 条
[1]   Ultrafast Photo-Thermal Switching of Terahertz Spin Currents [J].
Agarwal, Piyush ;
Medwal, Rohit ;
Kumar, Abhishek ;
Asada, Hironori ;
Fukuma, Yasuhiro ;
Rawat, Rajdeep Singh ;
Battiato, Marco ;
Singh, Ranjan .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (17)
[2]  
Bahadori-Haghighi S., 2020, INT J APPL PHYS, V128
[3]   One-parameter scaling at the dirac point in graphene [J].
Bardarson, J. H. ;
Tworzydlo, J. ;
Brouwer, P. W. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (10)
[4]   Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films [J].
Burdanova, Maria G. ;
Katyba, Gleb M. ;
Kashtiban, Reza ;
Komandin, Gennady A. ;
Butler-Caddle, Edward ;
Staniforth, Michael ;
Mkrtchyan, Aram A. ;
Krasnikov, Dmitry V. ;
Gladush, Yuriy G. ;
Sloan, Jeremy ;
Nasibulin, Albert G. ;
Lloyd-Hughes, James .
CARBON, 2021, 173 :245-252
[5]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[6]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[7]   Graphene Tunable Plasmon-Phonon Coupling in Mid-IR Complementary Metamaterial [J].
Chen, Nan ;
Hasan, Dihan ;
Ho, Chong Pei ;
Lee, Chengkuo .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (05)
[8]   From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces [J].
Chen, Shuqi ;
Li, Zhancheng ;
Liu, Wenwei ;
Cheng, Hua ;
Tian, Jianguo .
ADVANCED MATERIALS, 2019, 31 (16)
[9]   Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces [J].
Chen, Xu ;
Fan, Wenhui .
NANOMATERIALS, 2020, 10 (04)
[10]   Mechanical Terahertz Modulation Based on Single-Layered Graphene [J].
Cheng, Long ;
Jin, Zuanming ;
Ma, Zongwei ;
Su, Fuhai ;
Zhao, Yang ;
Zhang, Yongzhuan ;
Su, Tongyu ;
Sun, Yan ;
Xu, Xueli ;
Meng, Zhi ;
Bian, Yuecheng ;
Sheng, Zhigao .
ADVANCED OPTICAL MATERIALS, 2018, 6 (07)