Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans

被引:11
作者
Dupraz, Marie [1 ]
Filippi, Simonetta [2 ]
Gizzi, Alessio [2 ]
Quarteroni, Alfio [1 ,3 ]
Ruiz-Baier, Ricardo [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Modeling & Sci Comp, MATHICSE, CH-1015 Lausanne, Switzerland
[2] Univ Campus Biomed Rome, Nonlinear Phys & Math Modeling Lab, I-00128 Rome, Italy
[3] MOX Politecn Milano, I-20133 Milan, Italy
[4] Univ Lausanne, Inst Earth Sci, FGSE, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
finite element discretization; finite volume-element method; reaction-diffusion system; operator splitting; cardiac alternans; pseudo-ECG; spatio-temporal dynamics; SPATIALLY DISCORDANT ALTERNANS; ELECTROMECHANICAL MODEL; ACTION-POTENTIALS; TISSUE; PROPAGATION; MECHANISMS; EQUATIONS; DIFFUSION; FIBRILLATION; MYOCARDIUM;
D O I
10.1002/mma.3127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the spatio-temporal dynamics of the transmembrane potential in paced isotropic and anisotropic cardiac tissues. In particular, we observe a specific precursor of cardiac arrhythmias that is the presence of alternans in the action potential duration. The underlying mathematical model consists of a reaction-diffusion system describing the propagation of the electric potential and the nonlinear interaction with ionic gating variables. Either conforming piecewise continuous finite elements or a finite volume-element scheme are employed for the spatial discretization of all fields, whereas operator splitting strategies of first and second order are used for the time integration. We also describe an efficient mechanism to compute pseudo-ECG signals, and we analyze restitution curves and alternans patterns for physiological and pathological cardiac rhythms. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1046 / 1058
页数:13
相关论文
共 82 条
[1]   A simple two-variable model of cardiac excitation [J].
Aliev, RR ;
Panfilov, AV .
CHAOS SOLITONS & FRACTALS, 1996, 7 (03) :293-301
[2]   Efficient simulation of cardiac electrical propagation using high order finite elements [J].
Arthurs, Christopher J. ;
Bishop, Martin J. ;
Kay, David .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (10) :3946-3962
[3]   Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia [J].
Aslanidi, OV ;
Clayton, RH ;
Lambert, JL ;
Holden, AV .
JOURNAL OF THEORETICAL BIOLOGY, 2005, 237 (04) :369-381
[4]   A finite volume scheme for cardiac propagation in media with isotropic conductivities [J].
Bendahmane, Mostafa ;
Buerger, Raimund ;
Ruiz-Baier, Ricardo .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (09) :1821-1840
[5]   On Spiral Waves Arising in Natural Systems [J].
Bini, D. ;
Cherubini, C. ;
Filippi, S. ;
Gizzi, A. ;
Ricci, P. E. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (03) :610-622
[6]   Simulation of cardiac electrophysiology on next-generation high-performance computers [J].
Bordas, Rafel ;
Carpentieri, Bruno ;
Fotia, Giorgio ;
Maggio, Fabio ;
Nobes, Ross ;
Pitt-Francis, Joe ;
Southern, James .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1895) :1951-1969
[7]   Mathematical Modeling of Electrocardiograms: A Numerical Study [J].
Boulakia, Muriel ;
Cazeau, Serge ;
Fernandez, Miguel A. ;
Gerbeau, Jean-Frederic ;
Zemzemi, Nejib .
ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (03) :1071-1097
[8]   Simulation of electrophysiological waves with an unstructured finite element method [J].
Bourgault, Y ;
Ethier, M ;
LeBlanc, VG .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (04) :649-661
[9]   Minimal model for human ventricular action potentials in tissue [J].
Bueno-Orovio, Alfonso ;
Cherry, Elizabeth M. ;
Fenton, Flavio H. .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 253 (03) :544-560
[10]   A STABILIZED FINITE VOLUME ELEMENT FORMULATION FOR SEDIMENTATION-CONSOLIDATION PROCESSES [J].
Buerger, Raimund ;
Ruiz-Baier, Ricardo ;
Torres, Hector .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03) :B265-B289