Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction

被引:50
作者
Ma, Ruguang [1 ,2 ]
Xia, Bao Yu [3 ,4 ]
Zhou, Yao [1 ,2 ]
Li, Pengxi [1 ,2 ]
Chen, Yongfang [1 ,2 ]
Liu, Qian [1 ,2 ]
Wang, Jiacheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
[2] Shanghai Inst Mat Genome, Shanghai, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[4] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
基金
中国国家自然科学基金;
关键词
MESOPOROUS GRAPHENE; RECENT PROGRESS; NITROGEN; CARBON; PHOSPHORUS; CATALYSTS; BORON; PERFORMANCE; ULTRATHIN; SULFUR;
D O I
10.1016/j.carbon.2016.02.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dual-doped graphene is synthesized by a facile solvothermal method with the assistance of ionic liquids containing both N and X (X = B, P or S) atoms. All three types of co-doped graphene present excellent catalytic activity, demonstrating preferred four-electron selectivity and low peroxide yields toward oxygen reduction reaction in alkaline solution. Particularly, N, P-graphene exhibits superior catalytic activity to its counterparts in terms of half-wave potential (Delta E-1/2 = -70 mV relative to commercial Pt/C), methanol tolerance and long-term stability. This could be attributed to the unique porous nanostructure, change of charge density and high distortion of carbon structures originating from the combination of large electronegativity of N element and big covalent radius of P atoms. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 53 条
[1]   From ionic-liquid@metal-organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake [J].
Aijaz, Arshad ;
Akita, Tomoki ;
Yang, Hui ;
Xu, Qiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (49) :6498-6501
[2]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[3]   Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction [J].
Chen, Sheng ;
Duan, Jingjing ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2014, 26 (18) :2925-2930
[4]   B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Kwon, Han Chang ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3694-3699
[5]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[6]   Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
GREEN CHEMISTRY, 2011, 13 (02) :406-412
[7]   Phosphorus carbides: theory and experiment [J].
Claeyssens, F ;
Fuge, GM ;
Allan, NL ;
May, PW ;
Ashfold, MNR .
DALTON TRANSACTIONS, 2004, (19) :3085-3092
[8]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[9]   Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications [J].
del Cueto, M. ;
Ocon, P. ;
Poyato, J. M. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (04) :2004-2009
[10]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193