An approach based on neural computation to simulate the nanoscale CMOS circuits: Application to the simulation of CMOS inverter

被引:41
作者
Djeffal, F. [1 ]
Chahdi, M.
Benhaya, A.
Hafiane, M. L.
机构
[1] Univ Batna, Dept Elec, LEA, Batna 05000, Algeria
[2] Univ Batna, Dept Phys, LEPCM, Batna 05000, Algeria
关键词
MOSFET; artificial neural network; green's function; nanoscale CMOS; circuits simulation;
D O I
10.1016/j.sse.2006.12.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quantum mechanical (QM) effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new theory and modeling techniques that capture the physics of quantum transport accurately and efficiently. In this paper, we apply an artificial neural network (ANN) to the study of the nanoscale CMOS circuits. The latter is based on the 2-D numerical non-equilibrium Green's function (NEGF) simulation of the current-voltage characteristics of an undoped symmetric DG MOSFET. The encouraging comparisons between numerical results and ANN PSPICE simulations have indicated that the developed ANN subcircuit representation particularly suitable to be incorporated in SPICE-like tools for nanoscale CMOS circuits simulation. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 56
页数:9
相关论文
共 17 条
[1]   A compact Double-Gate MOSFET model comprising quantum-mechanical and nonstatic effects [J].
Baccarani, G ;
Reggiani, S .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (08) :1656-1666
[2]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[3]   An analytical approach based on neural computation to estimate the lifetime of deep submicron MOSFETs [J].
Djeffal, F ;
Guessasma, S ;
Benhaya, A ;
Chahdi, M .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (02) :158-164
[4]   Device scaling limits of Si MOSFETs and their application dependencies [J].
Frank, DJ ;
Dennard, RH ;
Nowak, E ;
Solomon, PM ;
Taur, Y ;
Wong, HSP .
PROCEEDINGS OF THE IEEE, 2001, 89 (03) :259-288
[5]   Modeling of the APS plasma spray process using artificial neural networks: basis, requirements and an example [J].
Guessasma, S ;
Montavon, G ;
Coddet, C .
COMPUTATIONAL MATERIALS SCIENCE, 2004, 29 (03) :315-333
[6]   Double-gate CMOS: Symmetrical-versus asymmetrical-gate devices [J].
Kim, K ;
Fossum, JG .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (02) :294-299
[7]   A physical compact model of DG MOSFET for mixed-signal circuit applications - Part I: Model description [J].
Pei, G ;
Ni, WP ;
Kammula, AV ;
Minch, BA ;
Kan, ECC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (10) :2135-2143
[8]   Investigation of the novel attributes of a single-halo double gate SOI MOSFET: 2D simulation study [J].
Reddy, GV ;
Kumar, MJ .
MICROELECTRONICS JOURNAL, 2004, 35 (09) :761-765
[9]  
Ren ZB, 2000, INTERNATIONAL ELECTRON DEVICES MEETING 2000, TECHNICAL DIGEST, P715, DOI 10.1109/IEDM.2000.904418
[10]   Two-dimensional quantum mechanical modeling of nanotransistors [J].
Svizhenko, A ;
Anantram, MP ;
Govindan, TR ;
Biegel, B ;
Venugopal, R .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (04) :2343-2354