Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions

被引:69
作者
Fayette, M. [1 ]
Nelson, A. [1 ]
Robinson, R. D. [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
DEPENDENT ELECTROCATALYTIC ACTIVITY; LIMITED REDOX REPLACEMENT; SINGLE-CRYSTAL SURFACES; FORMIC-ACID; PLATINUM MONOLAYER; GLASSY-CARBON; UNDERPOTENTIAL DEPOSITION; EPITAXIAL-GROWTH; SIZE CONTROL; FUEL-CELL;
D O I
10.1039/c4ta04189e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of nanoparticle deposition on the catalytic activity of Co3O4 nanoparticles for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are evaluated for two deposition methods: dropcasting and electrophoretic deposition (EPD). It is found that the EPD catalyst films demonstrate better catalytic activity per unit mass than do the dropcast films, as defined by diffusion-limited current, by approximately 27% for ORR and 25% for OER. When accounting for different loading levels, the absolute activities of these catalysts are superior to those of other reported Co3O4 colloidal nanoparticulate catalysts without conductive additives, showing that this material has excellent intrinsic activity for future optimization. Inspection of the electrode kinetics shows that EPD catalysts have more favorable characteristics as exhibited by their smaller Tafel slope (96 mV per decade for EPD versus 109 mV per decade for dropcast films). We analyze this enhancement by determining the metal oxide surface area for each catalyst film using a novel sequential metal deposition technique starting with electrodeposition of Ag followed by Pb underpotential deposition (UPD). Through UPD experiments we find, surprisingly, that EPD films have a smaller surface area than the dropcast films. We conclude that EPD films are more active per unit surface area. When accounting for surface area and mass, the EPD catalyst outperforms dropcast by a factor of 2.5 for ORR and 2.6 for OER. We anticipate that morphological differences in the EPD films relative to the dropcast ones, such as particle coverage and electrical conductivity, are responsible for this behavior. Such a result has important implications for future studies on the structure of EPD-manufactured nanoparticulate thin films and on the mechanisms for performance enhancement in such catalysts.
引用
收藏
页码:4274 / 4283
页数:10
相关论文
共 86 条
  • [1] Platinum monolayer fuel cell electrocatalysts
    Adzic, R. R.
    Zhang, J.
    Sasaki, K.
    Vukmirovic, M. B.
    Shao, M.
    Wang, J. X.
    Nilekar, A. U.
    Mavrikakis, M.
    Valerio, J. A.
    Uribe, F.
    [J]. TOPICS IN CATALYSIS, 2007, 46 (3-4) : 249 - 262
  • [2] [Anonymous], 2008, ELECTROCHEMICAL PHAS
  • [3] Formation of carbon-supported PtM alloys for low temperature fuel cells: a review
    Antolini, E
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) : 563 - 573
  • [4] A review on fundamentals and applications of electrophoretic deposition (EPD)
    Besra, Laxmidhar
    Liu, Meilin
    [J]. PROGRESS IN MATERIALS SCIENCE, 2007, 52 (01) : 1 - 61
  • [5] ELECTROCHEMICAL SURFACE-PROPERTIES OF CO3O4 ELECTRODES
    BOGGIO, R
    CARUGATI, A
    TRASATTI, S
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1987, 17 (04) : 828 - 840
  • [6] Chemical Transformation of Pt-Fe3O4 Colloidal Hybrid Nanoparticles into PtPb-Fe3O4 and Pt3Sn-Fe3O4 Heterodimers and (PtPb-Fe3O4)n Nanoflowers
    Bradley, Matthew J.
    Biacchi, Adam J.
    Schaak, Raymond E.
    [J]. CHEMISTRY OF MATERIALS, 2013, 25 (09) : 1886 - 1892
  • [7] Metal monolayer deposition by replacement of metal adlayers on electrode surfaces
    Brankovic, SR
    Wang, JX
    Adzic, RR
    [J]. SURFACE SCIENCE, 2001, 474 (1-3) : L173 - L179
  • [8] Catalytic Performance Comparison of Shape-Dependent Nanocrystals and Oriented Ultrathin Films of Pt4Cu Alloy in the Formic Acid Oxidation Process
    Bromberg, L.
    Fayette, M.
    Martens, B.
    Luo, Z. P.
    Wang, Y.
    Xu, D.
    Zhang, J.
    Fang, J.
    Dimitrov, N.
    [J]. ELECTROCATALYSIS, 2013, 4 (01) : 24 - 36
  • [9] Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells
    Choi, Jong-Ho
    Jeong, Kyoung-Jin
    Dong, Yujung
    Han, Jonghee
    Lim, Tae-Hoon
    Lee, Jae-Suk
    Sung, Yung-Eun
    [J]. JOURNAL OF POWER SOURCES, 2006, 163 (01) : 71 - 75
  • [10] Modeling of the redox properties of (hexaamine)cobalt(III/II) couples
    Comba, P
    Sickmuller, AF
    [J]. INORGANIC CHEMISTRY, 1997, 36 (20) : 4500 - 4507