CONVERGENCE OF THE ONE-DIMENSIONAL CAHN-HILLIARD EQUATION

被引:15
作者
Bellettini, Giovanni [1 ]
Bertini, Lorenzo [2 ]
Mariani, Mauro [3 ]
Novaga, Matteo [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Univ Aix Marseille, Lab Anal, Topol Probabil UMR 6632, CNRS, F-13397 Marseille 20, France
[4] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Cahn-Hilliard equation; Gamma-convergence; forward-backward equations; GAMMA-CONVERGENCE; GRADIENT FLOWS; DYNAMICS; LIMIT;
D O I
10.1137/120865410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cahn-Hilliard equation in one space dimension with scaling parameter epsilon, i.e., u(t) = (W'(u) - epsilon(2)u(xx))(xx), where W is a nonconvex potential. In the limit epsilon down arrow 0, under the assumption that the initial data are energetically well prepared, we show the convergence to a Stefan problem. The proof is based on variational methods and exploits the gradient flow structure of the Cahn-Hilliard equation.
引用
收藏
页码:3458 / 3480
页数:23
相关论文
共 19 条
[1]  
Ambrosio L., 2008, Lectures in Mathematics ETH Zurich
[2]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[3]  
[Anonymous], J DYN DIFFERENTIAL E
[4]   METASTABLE PATTERNS FOR THE CAHN-HILLIARD EQUATION .2. LAYER DYNAMICS AND SLOW INVARIANT MANIFOLD [J].
BATES, PW ;
XUN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) :165-216
[5]  
Bellettini G, 2006, DISCRETE CONT DYN-A, V16, P783
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]  
Chen XF, 1996, J DIFFER GEOM, V44, P262
[8]   Young measure solutions for a nonlinear parabolic equation of forward-backward type [J].
Demoulini, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :376-403
[9]   Irreversibility and hysteresis for a forward-backward diffusion equation [J].
Evans, LC .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (11) :1599-1620
[10]  
FIERRO F., 1998, MATH MOD METH APPL S, V8, P574