Distributed H∞ estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case

被引:192
作者
Ding, Derui [1 ]
Wang, Zidong [1 ,2 ]
Dong, Hongli [3 ]
Shu, Huisheng [1 ]
机构
[1] Donghua Univ, Sch Informat Sci & Technol, Shanghai 200051, Peoples R China
[2] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
[3] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Discrete time-varying systems; Distributed H-infinity state estimation; Recursive Riccati difference equations; Sensor networks; Stochastic nonlinearities; Stochastic parameters; TIME-VARYING SYSTEMS; FILTER DESIGN; STATE-ESTIMATION;
D O I
10.1016/j.automatica.2012.05.070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the distributed H-infinity state estimation problem for a class of discrete timevarying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the H-infinity performance constraint, and then the estimator design scheme is proposed via a certain H-2-type criterion. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati difference equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1575 / 1585
页数:11
相关论文
共 42 条
[1]   Decentralized robust Kalman filtering for uncertain stochastic systems over heterogeneous sensor networks [J].
Ahmad, Adrees ;
Gani, Mahbub ;
Yang, Fuwen .
SIGNAL PROCESSING, 2008, 88 (08) :1919-1928
[2]   Mixed H2/H∞ nonlinear filtering [J].
Aliyu, M. D. S. ;
Boukas, E. K. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2009, 19 (04) :394-417
[3]  
[Anonymous], IEEE T NEURAL NETW
[4]   Mean-square H∞ filtering for stochastic systems: Application to a 2DOF helicopter [J].
Basin, Michael ;
Elvira-Ceja, Santiago ;
Sanchez, Edgar N. .
SIGNAL PROCESSING, 2012, 92 (03) :801-806
[5]   Approximate finite-dimensional filtering for polynomial states over polynomial observations [J].
Basin, Michael ;
Shi, Peng ;
Calderon-Alvarez, Dario .
INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (04) :724-730
[6]   Central suboptimal H∞ filter design for linear time-varying systems with state and measurement delays [J].
Basin, Michael ;
Shi, Peng ;
Calderon-Alvarez, Dario .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (04) :411-421
[7]   Central Suboptimal H az Filter Design for Linear Time-Varying Systems with State or Measurement Delay [J].
Basin, Michael ;
Shi, Peng ;
Calderon-Alvarez, Dario ;
Wang, Jianfei .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2009, 28 (02) :305-330
[8]   Signal estimation with multiple delayed sensors using covariance information [J].
Caballero-Aguila, R. ;
Hermoso-Carazo, A. ;
Jimenez-Lopez, J. D. ;
Linares-Perez, J. ;
Nakamori, S. .
DIGITAL SIGNAL PROCESSING, 2010, 20 (02) :528-540
[9]   Distributed linear estimation over sensor networks [J].
Calafiore, Giuseppe C. ;
Abrate, Fabrizio .
INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (05) :868-882
[10]   Distributed Kalman filtering based on consensus strategies [J].
Carli, Ruggero ;
Chiuso, Alessandro ;
Schenato, Luca ;
Zampieri, Sandro .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2008, 26 (04) :622-633