Nanostructured Silver in Biological Applications

被引:0
作者
Kaimlova, Marketa [1 ]
Svorcik, Vaclav [1 ]
Siegel, Jakub [1 ]
机构
[1] Vysoka Skola Chem Technol Praze, Ustav Inzenyrstvi Pevnych Latek, Tech 3, Prague 16628, Czech Republic
来源
CHEMICKE LISTY | 2020年 / 114卷 / 06期
关键词
silver; nanostructures; polymers; antibacterial effects; biological applications; CHEMICAL-VAPOR-DEPOSITION; DEPENDENT COHESIVE ENERGY; SURFACE CHARACTERIZATION; ANTIBACTERIAL; NANOPARTICLES; NANOWIRES; POLYIMIDE; COATINGS; NANOCOMPOSITE; NANOSILVER;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biologically active metals, especially silver, are able to form nanostructured coatings of biocompatible polymers with the objective to enhance the functionality of polymeric material. This review refers to three types of strongly antibacterially active silver nanostructures (nanolayers, nanoislands and nanowires) suitable for biological applications, such as coatings which can prevent nosocomial infections. The mechanism of antibacterial effects of nanostructured Ag and its advantages, as compared with conventional antibiotics, are described. Subsequently, selected techniques for the preparation of these antibacterial coatings of biocompatible polymers are discussed. An emphasis is put on the possibility to increase the antibacterial activity and biocompatibility of the material by modifying the surface morphology of original polymer.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 66 条
[1]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[2]   Synthetic Fibers with Silver-Containing Coatings and Their Antimicrobial Properties [J].
Aleksandrova, T. P. ;
Vais, A. A. ;
Masliy, A. I. ;
Burmistrov, V. A. ;
Gusev, A. A. ;
Bagavieva, S. K. .
MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (06) :798-803
[3]   Modification of Pawlow's thermodynamical model for the melting of small single-component particles [J].
Barybin, Anatoly ;
Shapovalov, Victor .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (03)
[4]   Tailored second harmonic generation from self-organized metal nano-wires arrays [J].
Belardini, Alessandro ;
Larciprete, Maria Cristina ;
Centini, Marco ;
Fazio, Eugenio ;
Sibilia, Concita ;
Bertolotti, Mario ;
Toma, Andrea ;
Chiappe, Daniele ;
de Mongeot, Francesco Buatier .
OPTICS EXPRESS, 2009, 17 (05) :3603-3609
[5]   Laser-Induced Periodic Surface Structures-A Scientific Evergreen [J].
Bonse, Joern ;
Hoehm, Sandra ;
Kirner, Sabrina V. ;
Rosenfeld, Arkadi ;
Krueger, Joerg .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (03) :109-123
[6]   In vitro cytotoxicity of nanoparticles in mammalian germline stem cells [J].
Braydich-Stolle, L ;
Hussain, S ;
Schlager, JJ ;
Hofmann, MC .
TOXICOLOGICAL SCIENCES, 2005, 88 (02) :412-419
[7]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[8]   Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen [J].
Carvalho, D. ;
Sousa, T. ;
Morais, P. V. ;
Piedade, A. P. .
APPLIED SURFACE SCIENCE, 2016, 379 :489-496
[9]   Nanosilver as a new generation of nanoproduct in biomedical applications [J].
Chaloupka, Karla ;
Malam, Yogeshkumar ;
Seifalian, Alexander M. .
TRENDS IN BIOTECHNOLOGY, 2010, 28 (11) :580-588
[10]   Nanosilver: A nanoproduct in medical application [J].
Chen, X. ;
Schluesener, H. J. .
TOXICOLOGY LETTERS, 2008, 176 (01) :1-12