Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities

被引:54
作者
Boubellouta, A. [1 ]
Zouari, F. [2 ]
Boulkroune, A. [1 ]
机构
[1] Univ Jijel, LAJ, Ouled Aissa, Algeria
[2] Univ Tunis El Manar, Ecole Natl Ingenieurs Tunis, Lab Rech Automat LARA, Le Belvedere Tunis, Tunisia
关键词
Generalized projective synchronization; fuzzy control; fractional-order variable structure control; incommensurate fractional-order chaotic systems; SLIDING MODE CONTROL; H-INFINITY SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; DYNAMICS; SUBJECT; DESIGN;
D O I
10.1080/03081079.2019.1566231
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this research work, a novel fuzzy adaptive control is proposed to achieve a projective synchronization for a class of fractional-order chaotic systems with input nonlinearities (dead-zone together with sector nonlinearities). These master-slave systems under consideration are supposed to be with distinct models, different fractional-orders, unknown models, and dynamic external disturbances. The proposed control law consists of two main terms, namely: a fuzzy adaptive control term for appropriately approximating the uncertainties and a fractional-order variable-structure control term for robustly dealing with these inherent input nonlinearities. A Lyapunov approach is used to derive the updated laws and to prove the stability of the closed-loop control system. At last, a set of computer simulation results is carried out to illustrate and further validate the theoretical findings.
引用
收藏
页码:211 / 234
页数:24
相关论文
共 52 条
[1]   Comments on "H∞ synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach" [ISA Trans 50 (2011) 548-556] [J].
Aghababa, Mohammad Pourmahmood .
ISA TRANSACTIONS, 2012, 51 (01) :11-12
[2]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[3]  
Bandyopadhyay B, 2015, LECT NOTES ELECTR EN, V317, P1, DOI 10.1007/978-3-319-08621-7
[4]   Trajectory tracking with obstacle avoidance of redundant manipulator based on fuzzy inference systems [J].
Benzaoui, M. ;
Chekireb, H. ;
Tadjine, M. ;
Boulkroune, A. .
NEUROCOMPUTING, 2016, 196 :23-30
[5]   Synchronization of incommensurate non-identical fractional order chaotic systems using active control [J].
Bhalekar, S. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (08) :1495-1508
[6]   Using low-cost microcontrollers to implement variable hysteresis-width comparators for switching power converters [J].
Bosque-Moncusi, Josep M. ;
Valderrama-Blavi, Hugo ;
Flores-Bahamonde, Freddy ;
Vidal-Idiarte, Enric ;
Martinez-Salamero, Luis .
IET POWER ELECTRONICS, 2018, 11 (05) :787-795
[7]   How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems [J].
Boulkroune, A. ;
Tadjine, M. ;
M'Saad, M. ;
Farza, M. .
FUZZY SETS AND SYSTEMS, 2008, 159 (08) :926-948
[8]   Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems [J].
Boulkroune, A. ;
Bouzeriba, A. ;
Bouden, T. .
NEUROCOMPUTING, 2016, 173 :606-614
[9]   Adaptive fuzzy controller for multivariable nonlinear state time-varying delay systems subject to input nonlinearities [J].
Boulkroune, A. ;
M'Saad, M. ;
Farza, M. .
FUZZY SETS AND SYSTEMS, 2011, 164 (01) :45-65
[10]   A fuzzy adaptive control approach for nonlinear systems with unknown control gain sign [J].
Boulkroune, Abdesselem .
NEUROCOMPUTING, 2016, 179 :318-325