Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester

被引:152
作者
Lan, Chunbo [1 ]
Qin, Weiyang [1 ]
机构
[1] Northwestern Polytech Univ, Dept Engn Mech, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting; Nonlinear dynamics; Stochastic resonance; Piezoelectric materials;
D O I
10.1016/j.ymssp.2016.07.047
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
When a bistable energy harvester (BEH) is driven by weak random excitation, its harvesting efficiency will decrease due to the seldom occurrence of interwell motion. To overcome this defect, we developed an improved bistable energy harvester (IBEH) from BEH by adding a small magnet at the middle of two fixed magnets. It is proved that the attractive force originated from the additional magnet can pull down the potential barrier and shallow the potential well, but still keep the middle position of beam unstable. This can make jumping between potential wells easier. Thus IBEH can realize snap-through even at fairly weak excitation. The magnetic potential energy is given and the electromechanical equations are derived. Then the harvesting performance of IBEH under random excitation is studied. Validation experiments are designed and carried out. Comparisons prove that IBEH is preferable to BEH in harvesting random energy and can give out a high output voltage even at weak excitation. The size of additional magnet can be optimized to reach the best performance of IBEH. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 25 条
[1]   The analysis of piezomagnetoelastic energy harvesters under broadband random excitations [J].
Ali, S. F. ;
Adhikari, S. ;
Friswell, M. I. ;
Narayanan, S. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[2]   The bandwidth of optimized nonlinear vibration-based energy harvesters [J].
Cammarano, A. ;
Neild, S. A. ;
Burrow, S. G. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2014, 23 (05)
[3]   Internal Resonance Energy Harvesting [J].
Chen, Li-Qun ;
Jiang, Wen-An .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2015, 82 (03)
[4]   Nonlinear Energy Harvesting [J].
Cottone, F. ;
Vocca, H. ;
Gammaitoni, L. .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[5]   Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise [J].
Daqaq, Mohammed F. .
JOURNAL OF SOUND AND VIBRATION, 2011, 330 (11) :2554-2564
[6]   Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation [J].
De Paula, Aline S. ;
Inman, Daniel J. ;
Savi, Marcelo A. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 54-55 :405-416
[7]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[8]   Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters [J].
Ferrari, M. ;
Ferrari, V. ;
Guizzetti, M. ;
Ando, B. ;
Baglio, S. ;
Trigona, C. .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 162 (02) :425-431
[9]   Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass [J].
Friswell, Michael I. ;
Ali, S. Faruque ;
Bilgen, Onur ;
Adhikari, Sondipon ;
Lees, ArthurW ;
Litak, Grzegorz .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (13) :1505-1521
[10]  
Haitao L., 2016, SMART MATER STRUCT, V49