Generalized transition waves and their properties

被引:143
作者
Berestycki, Henri [1 ,2 ]
Hamel, Francois [3 ,4 ]
机构
[1] EHESS Paris, CAMS, F-75013 Paris, France
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Aix Marseille Univ, F-13397 Marseille 20, France
[4] Inst Univ France, LATP, F-13397 Marseille 20, France
基金
美国国家科学基金会;
关键词
FISHER-KPP EQUATION; TRAVELING FRONTS; QUALITATIVE PROPERTIES; ASYMPTOTIC-BEHAVIOR; CURVED FRONTS; PROPAGATION; DIFFUSION; EXISTENCE; STABILITY; SPEED;
D O I
10.1002/cpa.21389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize the usual notions of waves, fronts, and propagation speeds in a very general setting. These new notions, which cover all usual situations, involve uniform limits, with respect to the geodesic distance, to a family of hypersurfaces that are parametrized by time. We prove the existence of new such waves for some time-dependent reaction-diffusion equations, as well as general intrinsic properties, some monotonicity properties, and some uniqueness results for almost-planar fronts. The classification results, which are obtained under some appropriate assumptions, show the robustness of our general definitions. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:592 / 648
页数:57
相关论文
共 55 条
[1]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[2]  
[Anonymous], 1979, LECT NOTES BIOMATHEM
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[5]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[6]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[7]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[8]   Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena [J].
Berestycki, H ;
Hamel, F ;
Nadirashvili, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (02) :451-480
[9]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[10]  
Berestycki H, 2007, CONTEMP MATH, V446, P101