Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer

被引:11
作者
He, Liye [1 ]
Bulanova, Daria [2 ]
Oikkonen, Jaana [3 ]
Hakkinen, Antti [4 ]
Zhang, Kaiyang [3 ]
Zheng, Shuyu [3 ]
Wang, Wenyu [3 ]
Erkan, Erdogan Pekcan [3 ]
Carpen, Olli [3 ]
Joutsiniemi, Titta
Hietanen, Sakari
Hynninen, Johanna [5 ]
Huhtinen, Kaisa [3 ]
Hautaniemi, Sampsa [3 ]
Vaharautio, Anna [3 ]
Tang, Jing [3 ]
Wennerberg, Krister [6 ]
Aittokallio, Tero [7 ,8 ]
机构
[1] Inst Mol Med Finland FIMM, Helsinki, Finland
[2] Univ Copenhagen UC, Biotech Res & Innovat Ctr BRIC, Copenhagen, Denmark
[3] ONCOSYS Res Program UH, Helsinki, Finland
[4] Univ Helsinki UH, Helsinki, Finland
[5] Turku Univ Hosp, Turku, Finland
[6] Biotech Res & Innovat Ctr BRIC, Copenhagen, Denmark
[7] FIMM, Helsinki, Finland
[8] OCBE OUH, Helsinki, Finland
基金
芬兰科学院; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
toxic effects; combination synergy; ovarian cancer; network visualization; precision oncology; machine learning; drug combinations; DRUG; MODELS;
D O I
10.1093/bib/bbab272
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Each patient's cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to better predictive accuracy. The general platform and the comparison results are expected to become useful for future studies that use similar predictive approaches also in other cancer types.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Machine learning approaches to drug response prediction: challenges and recent progress [J].
Adam, George ;
Rampasek, Ladislav ;
Safikhani, Zhaleh ;
Smirnov, Petr ;
Haibe-Kains, Benjamin ;
Goldenberg, Anna .
NPJ PRECISION ONCOLOGY, 2020, 4 (01)
[2]   Combinatorial drug therapy for cancer in the post-genomic era [J].
Al-Lazikani, Bissan ;
Banerji, Udai ;
Workman, Paul .
NATURE BIOTECHNOLOGY, 2012, 30 (07) :679-691
[3]   Perspective Rational Cancer Treatment Combinations: An Urgent Clinical Need [J].
Boshuizen, Julia ;
Peeper, Daniel S. .
MOLECULAR CELL, 2020, 78 (06) :1002-1018
[4]  
Breiman L., 2001, Mach. Learn., V45, P5
[5]   Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option [J].
Buechel, M. ;
Herzog, T. J. ;
Westin, S. N. ;
Coleman, R. L. ;
Monk, B. J. ;
Moore, K. N. .
ANNALS OF ONCOLOGY, 2019, 30 (05) :721-732
[6]   Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives [J].
Bulusu, Krishna C. ;
Guha, Rajarshi ;
Mason, Daniel J. ;
Lewis, Richard P. I. ;
Muratov, Eugene ;
Motamedi, Yasaman Kalantar ;
Cokol, Murat ;
Bender, Andreas .
DRUG DISCOVERY TODAY, 2016, 21 (02) :225-238
[7]  
Chen T, 2016, KDD16 P 22 ACM, DOI DOI 10.1145/2939672.2939785
[8]   Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer [J].
Cheung, Hiu Wing ;
Cowley, Glenn S. ;
Weir, Barbara A. ;
Boehm, Jesse S. ;
Rusin, Scott ;
Scott, Justine A. ;
East, Alexandra ;
Ali, Levi D. ;
Lizotte, Patrick H. ;
Wong, Terence C. ;
Jiang, Guozhi ;
Hsiao, Jessica ;
Mermel, Craig H. ;
Getz, Gad ;
Barretina, Jordi ;
Gopal, Shuba ;
Tamayo, Pablo ;
Gould, Joshua ;
Tsherniak, Aviad ;
Stransky, Nicolas ;
Luo, Biao ;
Ren, Yin ;
Drapkin, Ronny ;
Bhatia, Sangeeta N. ;
Mesirov, Jill P. ;
Garraway, Levi A. ;
Meyerson, Matthew ;
Lander, Eric S. ;
Root, David E. ;
Hahn, William C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12372-12377
[9]   Crowdsourced mapping of unexplored target space of kinase inhibitors [J].
Cichonska, Anna ;
Ravikumar, Balaguru ;
Allaway, Robert J. ;
Wan, Fangping ;
Park, Sungjoon ;
Isayev, Olexandr ;
Li, Shuya ;
Mason, Michael ;
Lamb, Andrew ;
Tanoli, Ziaurrehman ;
Jeon, Minji ;
Kim, Sunkyu ;
Popova, Mariya ;
Capuzzi, Stephen ;
Zeng, Jianyang ;
Dang, Kristen ;
Koytiger, Gregory ;
Kang, Jaewoo ;
Wells, Carrow I. ;
Willson, Timothy M. ;
Oprea, Tudor I. ;
Schlessinger, Avner ;
Drewry, David H. ;
Stolovitzky, Gustavo ;
Wennerberg, Krister ;
Guinney, Justin ;
Aittokallio, Tero ;
Tan, Mehmet ;
Huang, Chih-Han ;
Shih, Edward S. C. ;
Chen, Tsai-Min ;
Wu, Chih-Hsun ;
Fang, Wei-Quan ;
Chen, Jhih-Yu ;
Hwang, Ming-Jing ;
Wang, Xiaokang ;
Ben Guebila, Marouen ;
Shamsaei, Behrouz ;
Singh, Sourav ;
Nguyen, Thin ;
Karimi, Mostafa ;
Wu, Di ;
Wang, Zhangyang ;
Shen, Yang ;
Ozturk, Hakime ;
Ozkirimli, Elif ;
Ozgur, Arzucan ;
Lim, Hansaim ;
Xie, Lei ;
Kanev, Georgi K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts [J].
Freshour, Sharon L. ;
Kiwala, Susanna ;
Cotto, Kelsy C. ;
Coffman, Adam C. ;
McMichael, Joshua F. ;
Song, Jonathan J. ;
Griffith, Malachi ;
Griffith, Obi L. ;
Wagner, Alex H. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D1144-D1151