Sphericalization and flattening in quasi-metric measure spaces

被引:1
作者
Zhou, Qingshan [1 ]
Li, Xining [2 ]
Ponnusamy, Saminathan [3 ]
Li, Yaxiang [4 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[4] Hunan First Normal Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
关键词
Quasi-metric spaces; Sphericalization; Flattening; Doubling condition; Ahlfors regular; Quasi-mobius; UNIFORM PERFECTNESS; GEOMETRY;
D O I
10.1016/j.jmaa.2022.126496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the note is to explore the invariance properties of sphericalization and flattening in quasi-metric spaces. We show that the Ahlfors regular and doubling property of quasi-metric spaces are preserved under sphericalization and flattening transformations. As an application, we give an improvement of a recent result in [21]. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 28 条
[1]  
[Anonymous], 1999, Metric structures for Riemannian and non-Riemannian spaces
[2]  
ASSOUAD P, 1983, B SOC MATH FR, V111, P429
[3]   SPHERICALIZATION AND FLATTENING [J].
Balogh, Zoltan M. ;
Buckley, Stephen M. .
CONFORMAL GEOMETRY AND DYNAMICS, 2005, 9 :76-101
[4]  
Bonk M, 2002, J DIFFER GEOM, V61, P81
[5]  
Buckley SM, 2008, INDIANA U MATH J, V57, P837
[6]  
Buyalo S., 2007, Elements of asymptotic geometry, Vvol. 1
[7]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[8]  
David G., 1997, OXFORD LECT SERIES M, V7
[9]   Some Invariant Properties of Quasi-Mobius Maps [J].
Heer, Loreno .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01) :69-77
[10]  
Heinonen J., 2015, SOBOLEV SPACES METRI, V27