Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids

被引:3
作者
Liu Hongzhi [1 ,2 ,3 ]
Yuan Hongjun [1 ,2 ]
Qiao Jiezeng [3 ]
Li Fanpei [3 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] China Coll, Hohhot 010051, Peoples R China
[3] Inner Mongolia Finance & Econ Coll, Hohhot 010051, Peoples R China
关键词
Navier-Stokes equations; Isentropic compressible fluids; Global strong solutions; Vacuum; Non-Newtonian potential; SYMMETRIC-SOLUTIONS; VISCOUS-FLUID; BEHAVIOR; MOTION;
D O I
10.1016/j.na.2011.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to discuss the global existence and uniqueness of strong solution for a class of the isentropic compressible Navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of the isentropic compressible Navier-Stokes equations. The first result shows only the existence, and the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5876 / 5891
页数:16
相关论文
共 13 条
[1]   Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids [J].
Choe, HJ ;
Kim, HS .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (01) :1-28
[2]   Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J].
Choe, HJ ;
Kim, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :504-523
[4]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[5]   On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations [J].
Jiang, S ;
Zhang, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 215 (03) :559-581
[6]  
Kazhikhov AV., 1979, Differ. Equ, V15, P463
[7]  
Kim H., GLOBAL EXISTENCE STR
[8]  
LIONS P. L., 1998, OXFORD LECT SERIES M, V10
[9]  
Lions P. L., 1998, MATH TOPICS FLUIDS M, V2
[10]   Uniform boundedness of the solutions for a one-dimensional isentropic model system of compressible viscous gas [J].
Matsumura, A ;
Yanagi, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (02) :259-274