On the cofiniteness of local cohomology modules

被引:58
作者
Bahmanpour, Kamal [1 ,2 ]
Naghipour, Reza [1 ,3 ]
机构
[1] Univ Tabriz, Dept Math, Tabriz, Iran
[2] Islamic Azad Univ, Dept Math, Ardebil Branch, Ardebil, Iran
[3] Inst Studies Theoret Phys & Math, Sch Math, Tehran, Iran
关键词
local cohomology; cofinite module; minimax module; associated primes;
D O I
10.1090/S0002-9939-08-09260-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that if I is an ideal of a Noetherian ring R and M is a finitely generated R-module, then for any minimax submodule N of H(I)(t) (M) the R-module Hom(R)(R/I, H(I)(t) (M)/N) is finitely generated, whenever the modules H(I)(0)(M), H(I)(1) (M),..., H(I)(t-1) (M) are minimax. As a consequence, it follows that the associated primes of H(I)(t) (M)/N are finite. This generalizes the main result of Brodmann and Lashgari (2000).
引用
收藏
页码:2359 / 2363
页数:5
相关论文
共 50 条
  • [41] Some results on the local cohomology of minimax modules
    Abbasi, Ahmad
    Roshan-Shekalgourabi, Hajar
    Hassanzadeh-Lelekaami, Dawood
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (02) : 327 - 333
  • [42] ON THE COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES
    Ghasemi, G.
    A'zami, J.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (01):
  • [43] Faltings' local-global principle for the in dimension <n of local cohomology modules
    Naghipour, Reza
    Maddahali, Robabeh
    Amoli, Khadijeh Ahmadi
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (08) : 3496 - 3509
  • [44] On the Finiteness Properties of Local Cohomology Modules for Regular Local Rings
    Sedghi, Monireh
    Bahmanpour, Kamal
    Naghipour, Reza
    TOKYO JOURNAL OF MATHEMATICS, 2017, 40 (01) : 83 - 96
  • [45] On the Local Cohomology and Formal Local Cohomology Modules
    Rezaei, Shahram
    Sadeghi, Behruz
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (01): : 37 - 43
  • [46] Local homology, finiteness of Tor modules and cofiniteness
    Divaani-Aazar, K.
    Faridian, H.
    Tousi, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (12)
  • [47] A criterion for cofiniteness of modules
    Khazaei, Mohammad
    Sazeedeh, Reza
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2024, 151 : 201 - 211
  • [48] Associated primes of local cohomology modules and Matlis duality
    Bahmanpour, Kamal
    Naghipour, Reza
    JOURNAL OF ALGEBRA, 2008, 320 (06) : 2632 - 2641
  • [49] FALTINGS' LOCAL-GLOBAL PRINCIPLE FOR THE MINIMAXNESS OF LOCAL COHOMOLOGY MODULES
    Doustimehr, Mohammad Reza
    Naghipour, Reza
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 400 - 411
  • [50] ON THE TOP LOCAL COHOMOLOGY AND FORMAL LOCAL COHOMOLOGY MODULES
    Rezaei, Shahram
    Sadeghi, Behrouz
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (01) : 149 - 160