Arithmetic properties of Delannoy numbers and Schroder numbers

被引:12
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; Polynomial; Delannoy number; Schroder number; Motzkin number; CENTRAL BINOMIAL COEFFICIENTS; CONGRUENCES; SUMS;
D O I
10.1016/j.jnt.2017.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define & para;& para;D-n{x) = Sigma(k=0n) ((n)(k))(2 )x(k )(x + 1)(n-k )for n = 0,1, 2 ,...& para;& para;and & para;& para;s(n)(x) = Sigma k=1(n )1/n(k(n))1/n<((n)(k))((n)(k-1))x(k-1) >(x+1)(n-k) >for n = 1, 2, 3, ...& para;& para;Then D-n (1) is the n-th central Delannoy number D-n, and s(n) (1) is the n-th little Schroder number S-n. In this paper we obtain some surprising arithmetic properties of D-n(x) and S-n(x). We show that & para;& para;1/n(Sigma k=0)n-1( D)k((x) s)k+1((x) is an element of Z[x(x+1)] for all n=1, 2, 3, ...& para;& para;Moreover, for any odd prime p and p-adic integer x not equivalent to 0, -1 (mod p), we establish the supercongruence)& para;& para;Sigma k=0p-1( D)k((x) s)k+1(x)( equivalent to 0 (mod p)2().& para;& para;As an application we confirm Conjecture 5.5 in [S14a], in particular )(we prove that & para;& para;1/n)( Sigma)k=0(n-1T)k(M)k((-3))( is an element of Z for all n = 1, 2, 3, ...,& para;& para;where T)k( is the k-th central trinomial coefficient and M)k( is the k-th Motzkin number. (C) 2017 Elsevier Inc. All rights reserved.)
引用
收藏
页码:146 / 171
页数:26
相关论文
共 50 条
  • [41] Figurate numbers, forms of mixed type, and their representation numbers
    Ramakrishnan, B.
    Vaishya, Lalit
    RAMANUJAN JOURNAL, 2024, 64 (04) : 1261 - 1284
  • [42] PERFECT POWERS AS DIFFERENCE OF PERRIN NUMBERS AND PADOVAN NUMBERS
    Duman, Merve guney
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (04): : 552 - 566
  • [43] Mersenne numbers which are products of two Pell numbers
    Alan, Murat
    Alan, Kadriye Simsek
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [44] ON CONGRUENCES INVOLVING THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS
    Koparal, Sibel
    Omur, Nese
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 649 - 658
  • [45] The bias conjecture for elliptic curves over finite fields and Hurwitz class numbers in arithmetic progressions
    Kane, Ben
    Pujahari, Sudhir
    Yang, Zichen
    MATHEMATISCHE ANNALEN, 2025, : 6073 - 6104
  • [46] Divisibility properties of the r-Bell numbers and polynomials
    Mezo, Istvan
    Ramirez, Jose L.
    JOURNAL OF NUMBER THEORY, 2017, 177 : 136 - 152
  • [47] Analytic properties of combinatorial triangles related to Motzkin numbers
    Chen, Xi
    Wang, Yi
    Zheng, Sai-Nan
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [48] Two Properties of Catalan-Larcombe-French Numbers
    Ji, Xiao-Juan
    Sun, Zhi-Hong
    JOURNAL OF INTEGER SEQUENCES, 2016, 19 (03)
  • [49] p-adic Properties of Lengyel's Numbers
    Barsky, D.
    Beziyin, J. -P.
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (07)
  • [50] ON LEONARDO NUMBERS
    Catarino, P.
    Borges, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (01): : 75 - 86