Arithmetic properties of Delannoy numbers and Schroder numbers

被引:12
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; Polynomial; Delannoy number; Schroder number; Motzkin number; CENTRAL BINOMIAL COEFFICIENTS; CONGRUENCES; SUMS;
D O I
10.1016/j.jnt.2017.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define & para;& para;D-n{x) = Sigma(k=0n) ((n)(k))(2 )x(k )(x + 1)(n-k )for n = 0,1, 2 ,...& para;& para;and & para;& para;s(n)(x) = Sigma k=1(n )1/n(k(n))1/n<((n)(k))((n)(k-1))x(k-1) >(x+1)(n-k) >for n = 1, 2, 3, ...& para;& para;Then D-n (1) is the n-th central Delannoy number D-n, and s(n) (1) is the n-th little Schroder number S-n. In this paper we obtain some surprising arithmetic properties of D-n(x) and S-n(x). We show that & para;& para;1/n(Sigma k=0)n-1( D)k((x) s)k+1((x) is an element of Z[x(x+1)] for all n=1, 2, 3, ...& para;& para;Moreover, for any odd prime p and p-adic integer x not equivalent to 0, -1 (mod p), we establish the supercongruence)& para;& para;Sigma k=0p-1( D)k((x) s)k+1(x)( equivalent to 0 (mod p)2().& para;& para;As an application we confirm Conjecture 5.5 in [S14a], in particular )(we prove that & para;& para;1/n)( Sigma)k=0(n-1T)k(M)k((-3))( is an element of Z for all n = 1, 2, 3, ...,& para;& para;where T)k( is the k-th central trinomial coefficient and M)k( is the k-th Motzkin number. (C) 2017 Elsevier Inc. All rights reserved.)
引用
收藏
页码:146 / 171
页数:26
相关论文
共 50 条
  • [31] New primitive covering numbers and their properties
    Harrington, Joshua
    Jones, Lenny
    Phillips, Tristan
    JOURNAL OF NUMBER THEORY, 2017, 172 : 160 - 177
  • [32] Some properties of the Schröder numbers
    Feng Qi
    Xiao-Ting Shi
    Bai-Ni Guo
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 717 - 732
  • [33] Congruences for Stirling numbers and Eulerian numbers
    Cao, Hui-Qin
    Pan, Hao
    ACTA ARITHMETICA, 2008, 132 (04) : 315 - 328
  • [34] The D numbers and the central factorial numbers
    Liu, Guodong
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (1-2): : 41 - 53
  • [35] Two congruences involving harmonic numbers with applications
    Mao, Guo-Shuai
    Sun, Zhi-Wei
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (02) : 527 - 539
  • [36] On divisibility properties of some differences of Motzkin numbers
    Lengyel, Tamas
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 121 - 136
  • [37] ON CONGRUENCES INVOLVING APeRY NUMBERS
    Xia, Wei
    Sun, Zhi-Wei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (08) : 3305 - 3315
  • [38] An Identity Involving the Euler Numbers
    Ma, Jinping
    PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2010, 9 : 513 - 515
  • [39] NEW CONGRUENCES WITH THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS
    Elkhiri, Laid
    Koparal, Sibel
    Omur, Nese
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) : 1079 - 1095
  • [40] Cullen numbers and Woodall numbers in generalized Fibonacci sequences
    Berczes, Attila
    Pink, Istvan
    Young, Paul Thomas
    JOURNAL OF NUMBER THEORY, 2024, 262 : 86 - 102