Drug delivery systems for RNA therapeutics

被引:842
作者
Paunovska, Kalina
Loughrey, David
Dahlman, James E. [1 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
关键词
NORMAL ORGAN WEIGHTS; LIPID-LIKE NANOPARTICLES; MODIFIED MESSENGER-RNA; CHRONIC HEPATITIS-C; II-THE-BRAIN; IN-VIVO; ANTISENSE OLIGONUCLEOTIDES; SIRNA DELIVERY; POLYMERIC NANOPARTICLES; MOLECULAR-MECHANISMS;
D O I
10.1038/s41576-021-00439-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
RNA-based gene therapy requires therapeutic RNA to function inside target cells without eliciting unwanted immune responses. RNA can be ferried into cells using non-viral drug delivery systems, which circumvent the limitations of viral delivery vectors. Here, we review the growing number of RNA therapeutic classes, their molecular mechanisms of action, and the design considerations for their respective delivery platforms. We describe polymer-based, lipid-based, and conjugate-based drug delivery systems, differentiating between those that passively and those that actively target specific cell types. Finally, we describe the path from preclinical drug delivery research to clinical approval, highlighting opportunities to improve the efficiency with which new drug delivery systems are discovered. RNA therapies can be used to manipulate gene expression or produce therapeutic proteins. Here, the authors describe the growing number of RNA therapies and their molecular mechanisms of action. They also discuss the path from preclinical drug delivery research to clinical approval of these drugs.
引用
收藏
页码:265 / 280
页数:16
相关论文
共 257 条
[51]   Polymeric nanoparticles: A study on the preparation variables and characterization methods [J].
Crucho, Carina I. C. ;
Barros, Maria Teresa .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 :771-784
[52]   Treating Cystic Fibrosis with mRNA and CRISPR [J].
Da Silva Sanchez, Alejandro ;
Paunovska, Kalina ;
Cristian, Ana ;
Dahlman, James E. .
HUMAN GENE THERAPY, 2020, 31 (17-18) :940-955
[53]   BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting [J].
Dagan, Noa ;
Barda, Noam ;
Kepten, Eldad ;
Miron, Oren ;
Perchik, Shay ;
Katz, Mark A. ;
Hernan, Miguel A. ;
Lipsitch, Marc ;
Reis, Ben ;
Balicer, Ran D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (15) :1412-1423
[54]   Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics [J].
Dahlman, James E. ;
Kauffman, Kevin J. ;
Xing, Yiping ;
Shaw, Taylor E. ;
Mir, Faryal F. ;
Dlott, Chloe C. ;
Langer, Robert ;
Anderson, Daniel G. ;
Wang, Eric T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :2060-2065
[55]  
Dahlman JE, 2014, NAT NANOTECHNOL, V9, P648, DOI [10.1038/NNANO.2014.84, 10.1038/nnano.2014.84]
[56]   Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics [J].
Dammes, Niels ;
Goldsmith, Meir ;
Ramishetti, Srinivas ;
Dearling, Jason L. J. ;
Veiga, Nuphar ;
Packard, Alan B. ;
Peer, Dan .
NATURE NANOTECHNOLOGY, 2021, 16 (09) :1030-+
[57]   Current understanding of biological identity at the nanoscale and future prospects [J].
Dawson, Kenneth A. ;
Yan, Yan .
NATURE NANOTECHNOLOGY, 2021, 16 (03) :229-242
[58]   Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice [J].
Delprato, A. ;
Bonheur, B. ;
Algeo, M. -P. ;
Rosay, P. ;
Lu, L. ;
Williams, R. W. ;
Crusio, W. E. .
GENES BRAIN AND BEHAVIOR, 2015, 14 (08) :591-606
[59]   Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development [J].
Dhuri, Karishma ;
Bechtold, Clara ;
Quijano, Elias ;
Ha Pham ;
Gupta, Anisha ;
Vikram, Ajit ;
Bahal, Raman .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (06)
[60]   Therapeutic RNA Delivery for COVID and Other Diseases [J].
Dobrowolski, Curtis ;
Paunovska, Kalina ;
Hatit, Marine Z. C. ;
Lokugamage, Melissa P. ;
Dahlman, James E. .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (15)