Thermoelectric Properties of Nanowires with a Graphitic Shell

被引:4
作者
Lee, Jong Woon [1 ,6 ]
Lee, Eun Kyung [3 ]
Kim, Byung Sung [5 ]
Lee, Jae Hyun [1 ,6 ]
Kim, Hee Goo [7 ]
Jang, Hyeon Sik [2 ,6 ]
Hwang, Sung Woo [6 ]
Choi, Byoung Lyong [4 ]
Whang, Dongmok [1 ,2 ,6 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
[3] Samsung Elect, Samsung Adv Inst Technol, Comp Aided Engn Grp, Suwon 443803, South Korea
[4] Samsung Elect, Samsung Adv Inst Technol, Nano Elect Lab, Suwon 443803, South Korea
[5] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
[6] Samsung Adv Inst Technol, Res Ctr Time Domain Nanofunct Devices, Suwon 443803, South Korea
[7] Samsung Elect, Samsung Adv Inst Technol, Analyt Engn Grp, Suwon 443803, South Korea
基金
新加坡国家研究基金会;
关键词
conducting materials; core-shell structure; graphitic layer; nanostructures; thermal conductivity; THERMAL-CONDUCTIVITY; GERMANIUM NANOWIRES; TRANSPORT; GRAPHENE; CONTACT; GE;
D O I
10.1002/cssc.201403492
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A thermoelectric device that can generate electricity from waste heat can play an important role in a global energy solution. However, the strongly correlated thermoelectric properties have remained a major hurdle for the highly efficient conversion of thermoelectric energy. Herein, the electrical and thermal properties of Si and SiO2 nanowires with few-layer graphitic shells are demonstrated; these structures exhibit enhanced electrical properties but no increase in thermal conductivity. The main path of the phonons through the structures is the core nanowire, which has a large cross-sectional area relative to that of the graphitic shell layer. However, the electrical conductivities of the nanowires with shell structures are high because of the good electrical conductivity of the graphitic shell, despite its small cross-sectional area.
引用
收藏
页码:2372 / 2377
页数:6
相关论文
共 43 条
[31]   Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires [J].
Roh, Jong Wook ;
Jang, So Young ;
Kang, Joohoon ;
Lee, Seunghyun ;
Noh, Jin-Seo ;
Kim, Woochul ;
Park, Jeunghee ;
Lee, Wooyoung .
APPLIED PHYSICS LETTERS, 2010, 96 (10)
[32]   Two-Dimensional Phonon Transport in Supported Graphene [J].
Seol, Jae Hun ;
Jo, Insun ;
Moore, Arden L. ;
Lindsay, Lucas ;
Aitken, Zachary H. ;
Pettes, Michael T. ;
Li, Xuesong ;
Yao, Zhen ;
Huang, Rui ;
Broido, David ;
Mingo, Natalio ;
Ruoff, Rodney S. ;
Shi, Li .
SCIENCE, 2010, 328 (5975) :213-216
[33]   Effect of grain boundaries on thermal transport in graphene [J].
Serov, Andrey Y. ;
Ong, Zhun-Yong ;
Pop, Eric .
APPLIED PHYSICS LETTERS, 2013, 102 (03)
[34]   Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device [J].
Shi, L ;
Li, DY ;
Yu, CH ;
Jang, WY ;
Kim, D ;
Yao, Z ;
Kim, P ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (05) :881-888
[35]   Complex thermoelectric materials [J].
Snyder, G. Jeffrey ;
Toberer, Eric S. .
NATURE MATERIALS, 2008, 7 (02) :105-114
[36]  
ThanhTrung F. J. P., 2013, APPL PHYS LETT, V102
[37]   VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH ( NEW METHOD GROWTH CATALYSIS FROM IMPURITY WHISKER EPITAXIAL + LARGE CRYSTALS SI E ) [J].
WAGNER, RS ;
ELLIS, WC .
APPLIED PHYSICS LETTERS, 1964, 4 (05) :89-&
[38]   Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition [J].
Wang, DW ;
Dai, HJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (24) :4783-4786
[39]   Thermal Transport in Suspended and Supported Few-Layer Graphene [J].
Wang, Ziqian ;
Xie, Rongguo ;
Bui, Cong Tinh ;
Liu, Dan ;
Ni, Xiaoxi ;
Li, Baowen ;
Thong, John T. L. .
NANO LETTERS, 2011, 11 (01) :113-118
[40]   Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime [J].
Wingert, Matthew C. ;
Chen, Zack C. Y. ;
Dechaumphai, Edward ;
Moon, Jaeyun ;
Kim, Ji-Hun ;
Xiang, Jie ;
Chen, Renkun .
NANO LETTERS, 2011, 11 (12) :5507-5513