Membrane protein sequestering by ionic protein-lipid interactions

被引:462
|
作者
van den Bogaart, Geert [1 ]
Meyenberg, Karsten [2 ]
Risselada, H. Jelger [3 ]
Amin, Hayder [1 ]
Willig, Katrin I. [4 ]
Hubrich, Barbara E. [2 ]
Dier, Markus [1 ]
Hell, Stefan W. [4 ]
Grubmueller, Helmut [3 ]
Diederichsen, Ulf [2 ]
Jahn, Reinhard [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
[2] Univ Gottingen, Inst Organ & Biomol Chem, D-37077 Gottingen, Germany
[3] Max Planck Inst Biophys Chem, Dept Theoret & Computat Biophys, D-37077 Gottingen, Germany
[4] Max Planck Inst Biophys Chem, Dept Nanobiophoton, D-37077 Gottingen, Germany
基金
美国国家卫生研究院;
关键词
GIANT UNILAMELLAR VESICLES; PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE; SYNTAXIN CLUSTERS; PLASMA-MEMBRANE; FUSION; SNARES; MODEL; ORGANIZATION; CHOLESTEROL; DOMAINS;
D O I
10.1038/nature10545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A(1), which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis(2,3). However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, coreconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.
引用
收藏
页码:552 / 555
页数:4
相关论文
共 50 条
  • [31] PROTEIN-LIPID INTERACTIONS AND MAINTENANCE OF RED CELL MEMBRANE INTEGRITY
    MOLDOW, CF
    HOSPELHO.V
    ZUCKERFR.D
    SILBER, R
    JOURNAL OF CLINICAL INVESTIGATION, 1970, 49 (06): : A67 - &
  • [32] Protein-Lipid Interactions on the HIV Membrane Defined by EPR Spectroscopy
    Song, Likai
    Hayati, Zahra
    Liu, Mengtian
    Kim, Mikyung
    Reinherz, Ellis
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 198A - 198A
  • [33] Electron spin resonance in membrane research: Protein-lipid interactions
    Marsh, Derek
    METHODS, 2008, 46 (02) : 83 - 96
  • [35] Membrane Bilayer Environment Influences Thermodynamics of Rhodopsin Membrane Protein-Lipid Interactions
    Chawla, Udeep
    Perera, Suchithranga M. D. C.
    Wallace, Adam A.
    Lewis, James W.
    Mertz, Blake
    Brown, Michael F.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 434A - 434A
  • [36] Specificity of Intramembrane Protein-Lipid Interactions
    Contreras, Francesc-Xabier
    Ernst, Andreas Max
    Wieland, Felix
    Bruegger, Britta
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2011, 3 (06): : 1 - 18
  • [37] PROTEIN-LIPID INTERACTIONS IN SOY FILMS
    FARNUM, C
    STANLEY, DW
    GRAY, JI
    CANADIAN INSTITUTE OF FOOD SCIENCE AND TECHNOLOGY JOURNAL-JOURNAL DE L INSTITUT CANADIEN DE SCIENCE ET TECHNOLOGIE ALIMENTAIRES, 1976, 9 (04): : 201 - 206
  • [38] PROTEIN-LIPID INTERACTIONS IN MODEL MEMBRANES
    PINK, DA
    GEORGALLAS, A
    LOOKMAN, T
    CHAPMAN, D
    ZUCKERMANN, MJ
    BIOPHYSICAL JOURNAL, 1982, 37 (02) : A165 - A165
  • [39] PROTEIN-LIPID INTERACTIONS - GLYCOPHORIN AND DIPALMITOYLPHOSPHATIDYLCHOLINE
    BRULET, P
    MCCONNELL, HM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1976, 68 (02) : 363 - 368
  • [40] PRESSURE EFFECTS ON PROTEIN-LIPID INTERACTIONS
    HEREMANS, K
    DESMEDT, H
    WUYTACK, F
    BIOPHYSICAL JOURNAL, 1982, 37 (01) : 74 - 75