Membrane protein sequestering by ionic protein-lipid interactions

被引:462
|
作者
van den Bogaart, Geert [1 ]
Meyenberg, Karsten [2 ]
Risselada, H. Jelger [3 ]
Amin, Hayder [1 ]
Willig, Katrin I. [4 ]
Hubrich, Barbara E. [2 ]
Dier, Markus [1 ]
Hell, Stefan W. [4 ]
Grubmueller, Helmut [3 ]
Diederichsen, Ulf [2 ]
Jahn, Reinhard [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
[2] Univ Gottingen, Inst Organ & Biomol Chem, D-37077 Gottingen, Germany
[3] Max Planck Inst Biophys Chem, Dept Theoret & Computat Biophys, D-37077 Gottingen, Germany
[4] Max Planck Inst Biophys Chem, Dept Nanobiophoton, D-37077 Gottingen, Germany
基金
美国国家卫生研究院;
关键词
GIANT UNILAMELLAR VESICLES; PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE; SYNTAXIN CLUSTERS; PLASMA-MEMBRANE; FUSION; SNARES; MODEL; ORGANIZATION; CHOLESTEROL; DOMAINS;
D O I
10.1038/nature10545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A(1), which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis(2,3). However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, coreconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.
引用
收藏
页码:552 / 555
页数:4
相关论文
共 50 条
  • [21] VEGETABLE PROTEIN-LIPID INTERACTIONS
    KAMAT, VB
    GRAHAM, GE
    DAVIS, MAF
    CEREAL CHEMISTRY, 1978, 55 (03) : 295 - 307
  • [22] PROTEIN-LIPID INTERACTIONS IN BIOMEMBRANES
    CHAPMAN, D
    GOMEZ, JC
    GONI, FM
    HOFFMANN, W
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1978, 359 (09): : 1069 - 1070
  • [23] PROTEIN-LIPID INTERACTIONS IN MYELIN
    BRAUN, PE
    RADIN, NS
    FEDERATION PROCEEDINGS, 1969, 28 (02) : 404 - &
  • [24] Biophysics of protein-lipid interactions
    Bender, Paula A.
    Jayaraman, Vasanthi
    BIOPHYSICAL JOURNAL, 2024, 123 (14) : 1912 - 1914
  • [25] Protein-lipid interactions at interfaces
    Fillery-Travis, A
    Mills, ENC
    Wilde, P
    GRASAS Y ACEITES, 2000, 51 (1-2) : 50 - 55
  • [26] Protein myristoylation in protein-lipid and protein-protein interactions
    Taniguchi, H
    BIOPHYSICAL CHEMISTRY, 1999, 82 (2-3) : 129 - 137
  • [27] Probing protein-lipid interactions by FRET between membrane fluorophores
    Trusova, Valeriya M.
    Gorbenko, Galyna P.
    Deligeorgiev, Todor
    Gadjev, Nikolai
    METHODS AND APPLICATIONS IN FLUORESCENCE, 2016, 4 (03):
  • [28] Incorporation of outer membrane protein OmpG in lipid membranes:: Protein-lipid interactions and β-barrel orientation
    Anbazhagan, V.
    Qu, J.
    Kleinschmidt, J. H.
    Marsh, D.
    BIOCHEMISTRY, 2008, 47 (23) : 6189 - 6198
  • [29] Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry
    Bolla, Jani Reddy
    Agasid, Mark T.
    Mehmood, Shahid
    Robinson, Carol V.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 88, 2019, 88 : 85 - 111
  • [30] The Role of Protein-Lipid Interactions in the Functioning of Bitopic Membrane Proteins
    Bocharov, Eduard V.
    Lesovoy, Dmitry M.
    Bocharova, Olga V.
    Urban, Anatoly S.
    Bershacky, Yaroslav V.
    Volynsky, Pavel E.
    Efremov, Roman G.
    Arseniev, Alexander S.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 211A - 211A