Membrane protein sequestering by ionic protein-lipid interactions

被引:462
|
作者
van den Bogaart, Geert [1 ]
Meyenberg, Karsten [2 ]
Risselada, H. Jelger [3 ]
Amin, Hayder [1 ]
Willig, Katrin I. [4 ]
Hubrich, Barbara E. [2 ]
Dier, Markus [1 ]
Hell, Stefan W. [4 ]
Grubmueller, Helmut [3 ]
Diederichsen, Ulf [2 ]
Jahn, Reinhard [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
[2] Univ Gottingen, Inst Organ & Biomol Chem, D-37077 Gottingen, Germany
[3] Max Planck Inst Biophys Chem, Dept Theoret & Computat Biophys, D-37077 Gottingen, Germany
[4] Max Planck Inst Biophys Chem, Dept Nanobiophoton, D-37077 Gottingen, Germany
基金
美国国家卫生研究院;
关键词
GIANT UNILAMELLAR VESICLES; PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE; SYNTAXIN CLUSTERS; PLASMA-MEMBRANE; FUSION; SNARES; MODEL; ORGANIZATION; CHOLESTEROL; DOMAINS;
D O I
10.1038/nature10545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A(1), which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis(2,3). However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, coreconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.
引用
收藏
页码:552 / 555
页数:4
相关论文
共 50 条
  • [1] Membrane protein sequestering by ionic protein–lipid interactions
    Geert van den Bogaart
    Karsten Meyenberg
    H. Jelger Risselada
    Hayder Amin
    Katrin I. Willig
    Barbara E. Hubrich
    Markus Dier
    Stefan W. Hell
    Helmut Grubmüller
    Ulf Diederichsen
    Reinhard Jahn
    Nature, 2011, 479 : 552 - 555
  • [2] On protein-lipid membrane interactions
    Ramsden, JJ
    COLLOIDS AND SURFACES B-BIOINTERFACES, 1999, 14 (1-4) : 77 - 81
  • [3] Probing membrane protein-lipid interactions
    Agasid, Mark T.
    Robinson, Carol, V
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 69 : 78 - 85
  • [4] Specific protein-lipid interactions in membrane proteins
    Hunte, C
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 : 938 - 942
  • [5] Ionic protein-lipid interactions at the plasma membrane regulate the structure and function of immunoreceptors
    Li, Hua
    Yan, Chengsong
    Guo, Jun
    Xu, Chenqi
    ADVANCES IN IMMUNOLOGY IN CHINA, PT A, 2019, 144 : 65 - 85
  • [6] PROTEIN-LIPID INTERACTIONS: ROLE OF MEMBRANE PLASTICITY AND LIPID SPECIFICITY ON PERIPHERAL PROTEIN INTERACTIONS
    Murphy, Jesse
    Knutson, Kristofer
    Hinderliter, Anne
    METHODS IN ENZYMOLOGY, VOL 466: BIOTHERMODYNAMICS, PT B, 2009, 466 : 431 - 453
  • [7] Quantitative Characterization of Membrane Protein-Lipid Interactions
    Park, Soohyung
    Im, Wonpil
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 805A - 805A
  • [8] Soft interfaces in membrane protein-lipid interactions
    Brown, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [9] PROTEIN-LIPID INTERACTIONS
    GENNIS, RB
    JONAS, A
    ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1977, 6 : 195 - 238
  • [10] PROTEIN INTERACTIONS IN BIOSYSTEMS - PROTEIN-LIPID INTERACTIONS
    KAREL, M
    JOURNAL OF FOOD SCIENCE, 1973, 38 (05) : 756 - 763