A problem of Hirst on continued fractions with sequences of partial quotients

被引:13
作者
Wang, Bao-Wei [1 ]
Wu, Jun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1112/blms/bdm103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B denote an infinite sequence of positive integers b(1) < b(2) < ..., and let tau denote the exponent of convergence of the series (infinity)Sigma(n=1)1/b(n); that is, tau = inf {s >= 0 : 1/b(n)(s) < infinity}. Define E(B) {x is an element of [0,1] :a(n)(x) is an element of B(n >= 1) and a(n) (x) --> infinity as n --> infinity}. K. E. Hirst [Proc. Amer. Math. Soc. 38 (1973) 221-2271 proved the inequality dim(H) E(B) <= tau/2 and conjectured (see ibid., p. 225 and [T. W. Cusick, Quart. J. Math. Oxford (2) 41 (1990) p. 2781) that equality holds. In this paper, we give a positive answer to this conjecture.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 3 条