High resolution crystal structures of the trans-enamine intermediates formed by sulbactam and clavulanic acid and E166A SHV-1 β-lactamase

被引:59
作者
Padayatti, PS
Helfand, MS
Totir, MA
Carey, MP
Carey, PR
Bonomo, RA
van den Akker, F
机构
[1] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[3] Louis Stokes Cleveland Vet Affairs Med Ctr, Div Res, Cleveland, OH 44106 USA
关键词
D O I
10.1074/jbc.M505333200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibiotic resistance mediated by constantly evolving beta-lactamases is a serious threat to human health. The mechanism of inhibition of these enzymes by therapeutic beta-lactamase inhibitors is probed using a novel approach involving Raman microscopy and x-ray crystallography. We have presented here the high resolution crystal structures of the beta-lactamase inhibitors sulbactam and clavulanic acid bound to the deacylation-deficient E166A variant of SHV-1 beta-lactamase. Our previous Raman measurements have identified the trans-enamine species for both inhibitors and were used to guide the soaking time and concentration to achieve full occupancy of the active sites. The two inhibitor-bound x-ray structures revealed a linear trans-enamine intermediate covalently attached to the active site Ser-70 residue. This intermediate was thought to play a key role in the transient inhibition of class A beta-lactamases. Both the Raman and x-ray data indicated that the clavulanic acid intermediate is decarboxylated. When compared with our previously determined tazobactam-bound inhibitor structure, our new inhibitor-bound structures revealed an increased disorder in the tail region of the inhibitors as well as in the enamine skeleton. The x-ray crystallographic observations correlated with the broadening of the O-C=C-N (enamine) symmetric stretch Raman band near 1595 cm(-1). Band broadening in the sulbactam and clavulanic acid intermediates reflected a heterogeneous conformational population that results from variations of torsional angles in the O-(C=O)-C=C=NH-C skeleton. These observations led us to conclude that the conformational stability of the trans-enamine form is critical for their transient inhibitory efficacy.
引用
收藏
页码:34900 / 34907
页数:8
相关论文
共 43 条
[1]  
Bonomo R.A., 1999, FRONT BIOSCI, V4, P34
[2]   Inactivation of CMY-2 β-lactamase by tazobactam:: initial mass spectroscopic characterization [J].
Bonomo, RA ;
Liu, JZ ;
Chen, YH ;
Ng, L ;
Hujer, AM ;
Anderson, VE .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2001, 1547 (02) :196-205
[3]   BETA-LACTAMASE MUTATIONS FAR FROM THE ACTIVE-SITE INFLUENCE INHIBITOR BINDING [J].
BONOMO, RA ;
DAWES, CG ;
KNOX, JR ;
SHLAES, DM .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1995, 1247 (01) :121-125
[4]   Extended-spectrum β-lactamases in the 21st century:: Characterization, epidemiology, and detection of this important resistance threat [J].
Bradford, PA .
CLINICAL MICROBIOLOGY REVIEWS, 2001, 14 (04) :933-951
[5]   6-(METHOXYMETHYLENE)PENICILLANIC ACID - INACTIVATOR OF RTEM BETA-LACTAMASE FROM ESCHERICHIA-COLI [J].
BRENNER, DG ;
KNOWLES, JR .
BIOCHEMISTRY, 1984, 23 (24) :5839-5846
[6]   PENICILLANIC ACID SULFONE - AN UNEXPECTED ISOTOPE EFFECT IN THE INTERACTION OF 6-ALPHA-MONODEUTERIO AND 6-BETA-MONODEUTERIO AND OF 6,6-DIDEUTERIO DERIVATIVES WITH RTEM BETA-LACTAMASE FROM ESCHERICHIA-COLI [J].
BRENNER, DG ;
KNOWLES, JR .
BIOCHEMISTRY, 1981, 20 (13) :3680-3686
[7]   PENICILLANIC ACID SULFONE - NATURE OF IRREVERSIBLE INACTIVATION OF RTEM BETA-LACTAMASE FROM ESCHERICHIA-COLI [J].
BRENNER, DG ;
KNOWLES, JR .
BIOCHEMISTRY, 1984, 23 (24) :5833-5839
[8]   Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: Observation of intermediates by electrospray ionization mass spectrometry [J].
Brown, RPA ;
Aplin, RT ;
Schofield, CJ .
BIOCHEMISTRY, 1996, 35 (38) :12421-12432
[9]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[10]  
Bush Karen, 2002, Curr Opin Investig Drugs, V3, P1284