Finite difference schemes for a non-linear heat equation with functional dependence

被引:0
作者
Leszczynski, H [1 ]
机构
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1999年 / 79卷 / 01期
关键词
D O I
10.1002/(SICI)1521-4001(199901)79:1<53::AID-ZAMM53>3.0.CO;2-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We analyse the question of convergence for some finite difference schemes by means of discrete inverse formulae instead of a maximum principle. It is due to this new technique that one can efficiently approximate these heat transport and diffusion-reaction equations which require some functional (delayed-integral) values of the gradient, too. Numerical experiments confirm our theoretical analysis and encourage engineers to apply difference schemes to parabolic equations and systems.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 22 条
  • [1] BESALA P, 1985, ANN POL MATH, V46, P19
  • [2] Brzychczy S., 1986, DIFF URAVN, V22, P705
  • [3] HETZER G, 1995, DIFFER INTEGRAL EQU, V8, P1047, DOI DOI 10.1016/S0362-546X(97)00119-3
  • [4] Kamont Z., 1996, REND MAT APPL, V16, P265
  • [5] Kamont Z., 1998, GEORGIAN MATH J, V5, P71
  • [6] KRZYZANSKI M, 1971, PARTIAL DIFFERENTIAL
  • [7] LADYZHENSKAYA OA, 1968, MATH MONOGRAPHS, V23
  • [8] LESZCZYNSKI H, 1994, COMP MATH MATH PHYS+, V34, P151
  • [9] LESZCZYNSKI H, 1991, ANN POL MATH, V53, P15
  • [10] Leszczynski H., 1991, COMMENT MATH PRACE M, V30, P357