Modelling and Prediction of Effect of Machining Parameters on Surface Roughness in Turning Operations

被引:8
作者
Ozdemir, Mustafa [1 ]
机构
[1] Bozok Univ, Machine & Met Technol Dept, Vocat High Sch, Erdogan Akdag Kampusu,Ataturk Yolu 7 Km, TR-66900 Yozgat, Turkey
来源
TEHNICKI VJESNIK-TECHNICAL GAZETTE | 2020年 / 27卷 / 03期
关键词
analysis of variance; cutting parameters; surface roughness; Taguchi method; CUTTING PARAMETERS; STAINLESS-STEEL; TAGUCHI METHOD; TOOL WEAR; OPTIMIZATION; METHODOLOGY; DESIGN; FORCES; REGRESSION; STRESSES;
D O I
10.17559/TV-20190320104114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, effects of different machining parameters on surface roughness in turning of St-37 material are presented. The machining experiments were carried out on the CNC lathe. In order to minimize the number of experiments, the experimental design was set up using Taguchi's L27 orthogonal array. Cutting speed (150 m/min, 200 m/min, and 250 m/min), feed rate (0,1 mm/rev, 0,2 mm/rev, and 0,3 mm/rev), depth of cut (0,5 mm, 1 mm, and 1,5 mm), and tool nose radius (0,4 mm, 0,8 mm and 1,2 mm) were used as control factors. The analysis of variance (ANOVA) was performed in order to determine the impact of the control factors on surface roughness. Signal/noise (S/N) ratios were determined in the Taguchi design. The results of the regression models and Taguchi Analysis revealed that the most effective parameters on surface roughness (Ra and Rz) were the feed rate (f) and tool nose radius (R).
引用
收藏
页码:751 / 760
页数:10
相关论文
共 50 条
[41]   Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel [J].
Caydas, Ulas ;
Ekici, Sami .
JOURNAL OF INTELLIGENT MANUFACTURING, 2012, 23 (03) :639-650
[42]   Optimization with Taguchi Method of Influences on Surface Roughness of Cutting Parameters in CNC Turning Processing [J].
Ozdemir, Mustafa .
MECHANIKA, 2019, 25 (05) :397-405
[43]   OPTIMIZATION OF SURFACE ROUGHNESS OF ALUMINIUM 6013-T6 ALLOY IN THE TURNING PROCESS [J].
Eksi, Secil ;
Karakaya, Cetin .
KONYA JOURNAL OF ENGINEERING SCIENCES, 2022, 10 (02) :337-345
[44]   Research on surface roughness prediction in turning Inconel 718 based on Gaussian process regression [J].
Hao, Zhaopeng ;
Cheng, Gang ;
Fan, Yihang .
PHYSICA SCRIPTA, 2023, 98 (01)
[45]   ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs [J].
Abbas, Adel Taha ;
Pimenov, Danil Yurievich ;
Erdakov, Ivan Nikolaevich ;
Taha, Mohamed Adel ;
Soliman, Mahmoud Sayed ;
El Rayes, Magdy Mostafa .
MATERIALS, 2018, 11 (05)
[46]   Modeling and optimization of machining parameters to minimize surface roughness and maximize productivity when turning polytetrafluoroethylene (PTFE) [J].
Azzi, Afef ;
Boulanouar, Lakhdar ;
Laouisi, Aissa ;
Mebrek, Alima ;
Yallese, Mohamed Athmane .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (1-2) :407-430
[47]   Prediction of Surface Finish and Optimization of Machining Parameters in Turning [J].
Prasad, Devi ;
Krishna, Prasad ;
Rao, Shrikantha S. .
ADVANCED MATERIALS RESEARCH II, PTS 1 AND 2, 2012, 463-464 :679-683
[48]   Effect of ball-burnishing parameters on surface roughness and surface hardness of aluminum alloy 6013 [J].
Buldum, Berat Baris ;
Bayhan, Burhan .
MATERIALS TESTING, 2018, 60 (04) :418-422
[49]   Influence of Coating Material and Cutting Parameters on Surface Roughness and Material Removal Rate in Turning Process Using Taguchi Method [J].
Moganapriya, C. ;
Rajasekar, R. ;
Ponappa, K. ;
Venkatesh, R. ;
Jerome, S. .
MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) :8532-8538
[50]   Optimization of cutting parameters regarding surface roughness during longitudinal turning [J].
Bilic, B. ;
Bajic, D. ;
Veza, I. .
Annals of DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, :39-40