Modelling and Prediction of Effect of Machining Parameters on Surface Roughness in Turning Operations

被引:8
作者
Ozdemir, Mustafa [1 ]
机构
[1] Bozok Univ, Machine & Met Technol Dept, Vocat High Sch, Erdogan Akdag Kampusu,Ataturk Yolu 7 Km, TR-66900 Yozgat, Turkey
来源
TEHNICKI VJESNIK-TECHNICAL GAZETTE | 2020年 / 27卷 / 03期
关键词
analysis of variance; cutting parameters; surface roughness; Taguchi method; CUTTING PARAMETERS; STAINLESS-STEEL; TAGUCHI METHOD; TOOL WEAR; OPTIMIZATION; METHODOLOGY; DESIGN; FORCES; REGRESSION; STRESSES;
D O I
10.17559/TV-20190320104114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, effects of different machining parameters on surface roughness in turning of St-37 material are presented. The machining experiments were carried out on the CNC lathe. In order to minimize the number of experiments, the experimental design was set up using Taguchi's L27 orthogonal array. Cutting speed (150 m/min, 200 m/min, and 250 m/min), feed rate (0,1 mm/rev, 0,2 mm/rev, and 0,3 mm/rev), depth of cut (0,5 mm, 1 mm, and 1,5 mm), and tool nose radius (0,4 mm, 0,8 mm and 1,2 mm) were used as control factors. The analysis of variance (ANOVA) was performed in order to determine the impact of the control factors on surface roughness. Signal/noise (S/N) ratios were determined in the Taguchi design. The results of the regression models and Taguchi Analysis revealed that the most effective parameters on surface roughness (Ra and Rz) were the feed rate (f) and tool nose radius (R).
引用
收藏
页码:751 / 760
页数:10
相关论文
共 50 条
[31]   Soft Computing Techniques for Surface Roughness Prediction in Hard Turning: A Literature Review [J].
He, Kang ;
Gao, Mengdi ;
Zhao, Zhuanzhe .
IEEE ACCESS, 2019, 7 :89556-89569
[32]   Studying and Optimizing the Effect of Process Parameters on Machining Vibration in Turning Process of AISI 1040 Steel [J].
Al-Shayea, Adel ;
Abdullah, Fawaz M. ;
Noman, Mohammed A. ;
Kaid, Husam ;
Nasr, Emad Abouel .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
[33]   Effect of machining parameters on turning process of Inconel 718 [J].
Pinheiro, Cleverson ;
Kondo, Marcel Yuzo ;
Amaral, Simone Simoes ;
Callisaya, Emanuele Schneider ;
Candido De Souza, Jose Vitor ;
De Sampaio Alves, Manoel Cleber ;
Ribeiro, Marcos Valerio .
MATERIALS AND MANUFACTURING PROCESSES, 2021, 36 (12) :1421-1437
[34]   Effect of machining parameters on surface roughness while turning metal matrix composites-an experimental approach [J].
Rao, C. R. Prakash ;
Bhagyashekar, M. S. ;
PoornaChandra ;
Ravikumar, D., V .
MATERIALS TODAY-PROCEEDINGS, 2018, 5 (11) :24770-24779
[35]   Modeling and optimization of machining parameters for minimizing surface roughness and tool wear during AISI 52100 steel dry turning [J].
Paturi, Uma Maheshwera Reddy ;
Yash, Ankathi ;
Palakurthy, Sai Teja ;
Reddy, N. S. .
MATERIALS TODAY-PROCEEDINGS, 2022, 50 :1164-1172
[36]   Surface Roughness Identification Using the Grey Relational Analysis with Multiple Performance Characteristics in Turning Operations [J].
Suhail, Adeel H. ;
Ismail, N. ;
Wong, S. V. ;
Jalil, N. A. Abdul .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2012, 37 (04) :1111-1117
[37]   Fuzzy rule-based modeling of machining parameters for surface roughness in turning carbon particle-reinforced polyamide [J].
Palanikumar, K. ;
Rajasekaran, T. ;
Latha, B. .
JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2015, 28 (10) :1387-1405
[38]   Surface roughness prediction in turning of femoral head [J].
Nikolaos I. Galanis ;
Dimitrios E. Manolakos .
The International Journal of Advanced Manufacturing Technology, 2010, 51 :79-86
[39]   Prediction of Surface Roughness Based on Cutting Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network [J].
Lin, Yung-Chih ;
Wu, Kung-Da ;
Shih, Wei-Cheng ;
Hsu, Pao-Kai ;
Hung, Jui-Pin .
APPLIED SCIENCES-BASEL, 2020, 10 (11)
[40]   Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast iron [J].
Kalyon, Ali ;
Gunay, Mustafa ;
Ozyurek, Dursun .
ADVANCES IN MANUFACTURING, 2018, 6 (04) :419-429