Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway

被引:112
|
作者
Xu, Geng-Rui [1 ]
Zhang, Chuang [1 ]
Yang, Hong-Xia [1 ]
Sun, Jia-Huan [3 ,4 ]
Zhang, Yue [1 ,2 ,4 ]
Yao, Ting-ting [1 ]
Li, Yuan [1 ]
Ruan, Lin [1 ]
An, Ran [1 ,2 ]
Li, Ai-Ying [1 ,2 ,4 ]
机构
[1] Hebei Univ Chinese Med, Coll Basic Med, Dept Biochem & Mol Biol, Shijiazhuang 050200, Hebei, Peoples R China
[2] Hebei Key Lab Chinese Med Res Cardio Cerebrovasc, Shijiazhuang 050091, Hebei, Peoples R China
[3] Hebei Univ Chinese Med, Coll Integrat Chinese & Western Med, Dept Med Lab Sci, Shijiazhuang 050200, Hebei, Peoples R China
[4] Hebei Higher Educ Inst Appl Technol Res Ctr TCM F, Shijiazhuang 050091, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified citrus pectin; Myocardial fibrosis; Heart failure; Galectin-3; TLR4; Inflammation; NF-KAPPA-B; VENTRICULAR EJECTION FRACTION; HEART-FAILURE; INFARCTION; INHIBITION; ALDOSTERONE; DYSFUNCTION; RATS; MARKERS;
D O I
10.1016/j.biopha.2020.110071
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Myocardial fibrosis (MF) plays a key role in the development and progression of heart failure (HF) with limited effective therapies. Galectin-3 (Gal-3) is a biomarker associated with fibrosis and inflammation in patients with HF. The Gal-3 inhibitor modified citrus pectin (MCP) protects against cardiac dysfunction, though the underlying mechanism remains unclear. The aim of this study was to investigate the effect and mechanism of MCP on MF using an isoproterenol (ISO)-induced rat model of HF. Cardiac function was analyzed by echocardiography and electrocardiography. Histopathological changes in the heart tissue were assessed by hematoxylin-eosin and Masson trichrome staining. The mRNA and protein expression levels of signaling molecules and pro-inflammatory cytokines were monitored by immunohistochemistry, western blot, qRT-PCR and ELISA analyses. The results demonstrated that MCP ameliorated cardiac dysfunction, decreased myocardial injury and reduced collagen deposition. Furthermore, MCP downregulated the expression of Gal-3, TLR4 and MyD88, thereby inhibiting NF-kappa B-p65 activation. MCP also decreased the expression of IL-1 beta, IL-18 and TNF-alpha, which have been implicated in the pathogenesis of HF. These inhibitory effects were observed on day 15 and continued until day 22. Taken together, these results suggest that MCP ameliorates cardiac dysfunction through inhibiting inflammation and MF. These effects may be through downregulating Gal-3 expression and suppressing activation of the TLR4/MyD88/NF-kappa B signaling pathway. The present study supports the use of Gal-3 as a therapeutic target for the treatment of MF after myocardial infarction.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Galectin-3 is involved in inflammation and fibrosis in arteriogenic erectile dysfunction via the TLR4/MyD88/NF-κB pathway
    Guanbo Wang
    Ruiyu Li
    Chen Feng
    Kefan Li
    Shuai Liu
    Qiang Fu
    Cell Death Discovery, 10
  • [2] Galectin-3 is involved in inflammation and fibrosis in arteriogenic erectile dysfunction via the TLR4/MyD88/NF-κB pathway
    Wang, Guanbo
    Li, Ruiyu
    Feng, Chen
    Li, Kefan
    Liu, Shuai
    Fu, Qiang
    CELL DEATH DISCOVERY, 2024, 10 (01)
  • [3] Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease
    Huang, Linjing
    Lin, Tingting
    Shi, Meizhen
    Wu, Peiwen
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2024, 327 (04) : R410 - R422
  • [4] Schisandra chinensis extract ameliorates myocardial ischemia/reperfusion injury via TLR4/NF-κB/MyD88 signaling pathway
    Lou, Yang
    Xu, Bo
    Li, Xianshuai
    Xu, Xiaoyi
    Chen, Xiaoguo
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2020, 19 (01) : 57 - 62
  • [5] Balanophora dioica ethanol extract ameliorates isoproterenol-induced myocardial injury by suppressing fibrosis, inflammation and apoptosis by regulating TLR4/MyD88/NF-κB signaling pathway
    Gao, Ting
    Li, Minjie
    Zhang, Meng
    Xiang, Yuxi
    Huang, Zilong
    Tang, Weizhuo
    Zhang, Xiaoshu
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (04)
  • [6] LuQi Formula Ameliorates Myocardial Fibrosis by Suppressing TLR4/MyD88/NF-κB Pathway and NLRP3 Inflammasome Activation in Mice with Myocardial Infarction
    Zhang, Xiaoqing
    Qu, Huiyan
    Yang, Tao
    Liu, Qian
    Zhao, Dandan
    Liu, Wenrui
    Wang, Tian
    Zhou, Hua
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [7] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Zhu, Kefu
    Wang, Xihao
    Weng, Yingzheng
    Mao, Genxiang
    Bao, Yizhong
    Lou, Jiangjie
    Wu, Shaoze
    Jin, Weihua
    Tang, Lijiang
    CARDIOVASCULAR DRUGS AND THERAPY, 2024, 38 (01) : 69 - 78
  • [8] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Kefu Zhu
    Xihao Wang
    Yingzheng Weng
    Genxiang Mao
    Yizhong Bao
    Jiangjie Lou
    Shaoze Wu
    Weihua Jin
    Lijiang Tang
    Cardiovascular Drugs and Therapy, 2024, 38 : 69 - 78
  • [9] Lipoxin suppresses inflammation via the TLR4/MyD88/NF-κB pathway in periodontal ligament cells
    Ali, Muhanad
    Yang, Fang
    Jansen, John A.
    Walboomers, X. Frank
    ORAL DISEASES, 2020, 26 (02) : 429 - 438
  • [10] Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-ΚB signaling pathway
    Shi, Yanan
    Li, Bohan
    Sun, Shuaifeng
    Tian, Wendan
    Ma, Zizhe
    Wei, Liu
    IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2023, 26 (01) : 114 - 120