Existence of solutions for a class of fractional boundary value problems via critical point theory

被引:242
作者
Jiao, Feng [1 ]
Zhou, Yong [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional differential equations; Boundary value problem; Fractional advection-dispersion equation; Critical point theory; Existence; DIFFERENTIAL-EQUATIONS; ORDER; DISPERSION; UNIQUENESS;
D O I
10.1016/j.camwa.2011.03.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by the critical point theory, a new approach is provided to study the existence of solutions to the following fractional boundary value problem: {d/dt(1/2 D-0(t)-beta(u'(t)) + 1/2(t)D(T)(-beta)(mu'(t)) + del F(t, u(t)) = 0, u a.e.t is an element of [0, T], u(0) = u(T) = 0, where D-0(t)-beta and D-t(T)-beta are the left and right Riemann-Liouville fractional integrals of order 0 <= beta < 1 respectively, F : [0, T] x R-N -> R is a given function and del F(t, x) is the gradient of F at x. Our interest in this problem arises from the fractional advection-dispersion equation (see Section 2). The variational structure is established and various criteria on the existence of solutions are obtained. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1181 / 1199
页数:19
相关论文
共 41 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]   Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) :1838-1843
[5]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[6]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[7]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]   The Dual Action of Fractional Multi Time Hamilton Equations [J].
Baleanu, Dumitru ;
Golmankhaneh, Ali Khalili ;
Golmankhaneh, Alireza Khalili .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (09) :2558-2569
[9]   Existence of Periodic Solution for a Nonlinear Fractional Differential Equation [J].
Belmekki, Mohammed ;
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2009,
[10]   Boundary value problems for differential equations with fractional order and nonlocal conditions [J].
Benchohra, M. ;
Hamani, S. ;
Ntouyas, S. K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2391-2396