Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem

被引:0
|
作者
Groisman, P
Rossi, JD
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
blow-up; semilinear parabolic equations; semidiscretization in space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find a bound for the modulus of continuity of the blow-up time for the problem u(t)=lambdaDeltau+u(p), with initial datum u(x,0)=phi(x)+hf(x) respect to the parameters lambda, p and h. We also find an estimate for the rate of convergence of the blow-up times for a semi-discrete numerical scheme.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 50 条
  • [1] On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem
    Groisman, P
    Rossi, JD
    Zaag, H
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) : 737 - 744
  • [3] Adaptive numerical schemes for a parabolic problem with blow-up
    Ferreira, R
    Groisman, P
    Rossi, JD
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (03) : 439 - 463
  • [4] Numerical finite difference approximations of a coupled parabolic system with blow-up
    Khalil, Manar I.
    Hashim, Ishak
    Rasheed, Maan A.
    Ismail, Eddie S.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (04): : 387 - 407
  • [5] NUMERICAL BLOW-UP TIME FOR NONLINEAR PARABOLIC PROBLEMS
    Achille, Adou Koffi
    Fatou, N. Diop
    Koffi, N' Guessan
    Augustin, Toure Kidjegbo
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2022, 28 : 135 - 152
  • [6] Infinite time blow-up of solutions to a nonlinear parabolic problem
    Chen, CN
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (02) : 409 - 427
  • [7] Lower bounds for blow-up time in a nonlinear parabolic problem
    Payne, L. E.
    Song, J. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (01) : 394 - 396
  • [8] An adaptive time step procedure for a parabolic problem with blow-up
    Acosta, G
    Durán, RG
    Rossi, JD
    COMPUTING, 2002, 68 (04) : 343 - 373
  • [9] An Adaptive Time Step Procedure for a Parabolic Problem with Blow-up
    G. Acosta
    R. G. Durán
    J. D. Rossi
    Computing, 2002, 68 : 343 - 373
  • [10] ANALYSIS FOR TIME DISCRETE APPROXIMATIONS OF BLOW-UP SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS
    Kyza, Irene
    Makridakis, Charalambos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) : 405 - 426