SEMI-SUPERVISED PSEUDO-HEALTHY IMAGE SYNTHESIS VIA CONFIDENCE AUGMENTATION

被引:2
作者
Du, Yuanqi [1 ]
Quan, Quan [3 ]
Han, Hu [2 ,3 ,4 ]
Zhou, S. Kevin [2 ,5 ,6 ,7 ]
机构
[1] George Mason Univ, Fairfax, VA 22030 USA
[2] Chinese Acad Sci, Inst Comp Technol, CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Peng Cheng Lab, Shenzhen, Peoples R China
[5] Univ Sci & Technol China, Med Imaging Robot & Analyt Comp Lab & Engn MIRACL, Suzhou 215123, Peoples R China
[6] Univ Sci & Technol China, Sch Biomed Engn, Suzhou 215123, Peoples R China
[7] Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou 215123, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
基金
国家重点研发计划;
关键词
Generative adversarial networks; semisupervised learning; medical image synthesis;
D O I
10.1109/ISBI52829.2022.9761522
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pseudo-healthy image synthesis, which computationally synthesizes a pathology-free image from a pathological one, has been proved valuable in many downstream medical image analysis tasks, from lesion detection, data augmentation to clinical surgery suggestion. Thanks to the advancement of generative adversarial networks (GANs), recent studies have made steady progress to synthesize realistic-looking pseudohealthy images with the perseverance of the structure identity as well as the healthy-looking appearance. Nevertheless, it is challenging to generate high-quality pseudo-healthy images in the absence of the lesion segmentation mask. In this paper, we aim to alleviate the needs of a large amount of lesion segmentation labeled data when synthesizing pseudo-healthy images. We propose a semi-supervised pseudo-healthy image synthesis framework which leverages unlabeled pathological image data for efficient pseudo-healthy image synthesis based on a novel confidence augmentation trick. Furthermore, we re-design the network architecture which takes advantage of previous studies and allows for more flexible applications. Extensive experiments have demonstrated the effectiveness of the proposed method in generating realisticlooking pseudo-healthy images and improving downstream task performances.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Generative Adversarial Networks for Brain Lesion Detection [J].
Alex, Varghese ;
Safwan, Mohammed K. P. ;
Chennamsetty, Sai Saketh ;
Krishnamurthi, Ganapathy .
MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
[2]   Pathology Segmentation Using Distributional Differences to Images of Healthy Origin [J].
Andermatt, Simon ;
Horvath, Antal ;
Pezold, Simon ;
Cattin, Philippe .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :228-238
[3]   Visual Feature Attribution using Wasserstein GANs [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Tezcan, Kerem Can ;
Ang, Jia Xi ;
Konukoglu, Ender .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8309-8319
[4]   Brain lesion segmentation through image synthesis and outlier detection [J].
Bowles, Christopher ;
Qin, Chen ;
Guerrero, Ricardo ;
Gunn, Roger ;
Hammers, Alexander ;
Dickie, David Alexander ;
Hernandez, Maria Valdes ;
Wardlaw, Joanna ;
Rueckert, Daniel .
NEUROIMAGE-CLINICAL, 2017, 16 :643-658
[5]  
Chen XR, 2018, Arxiv, DOI arXiv:1806.04972
[6]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[7]  
Reinhold J.C., 2021, ARXIV
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]   An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection [J].
Sun, Liyan ;
Wang, Jiexiang ;
Huang, Yue ;
Ding, Xinghao ;
Greenspan, Hayit ;
Paisley, John .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (08) :2303-2314
[10]  
Wang Z, 2003, CONF REC ASILOMAR C, P1398