Toeplitz operators with semi-almost-periodic matrix symbols on Hardy spaces

被引:7
作者
Böttcher, A [1 ]
Karlovich, YI
Spitkovsky, I
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Inst Politecn Nacl, CINVESTAV, Dept Matemat, Mexico City 07000, DF, Mexico
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会;
关键词
Toeplitz operator; Fredholm operator; index formula; almost periodic function; spectrum; essential spectrum;
D O I
10.1023/A:1010683522795
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a Fredholm criterion and an index formula for Toeplitz operators with semi-almost-periodic matrix symbols on the Hardy spaces H-p (1 < p < infinity). Our main result completes the Fredholm theory of the aforementioned operators and generalizes previous results, which concerned the case p = 2 or were based on certain additional assumptions, such as factorizability, for the almost-periodic representatives of the symbol.
引用
收藏
页码:115 / 136
页数:22
相关论文
共 22 条
[1]  
[Anonymous], 1981, Operator Theory: Advances and Applications
[2]  
[Anonymous], MATH USSR IZVESTIYA
[3]   Sarason interpolation and Toeplitz corona theorem for almost periodic matrix functions [J].
Ball, JA ;
Karlovich, YI ;
Rodman, L ;
Spitkovsky, IM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 32 (03) :243-281
[4]   A GENERAL LOOK AT LOCAL PRINCIPLES WITH SPECIAL EMPHASIS ON THE NORM COMPUTATION ASPECT [J].
BOTTCHER, A ;
KRUPNIK, N ;
SILBERMANN, B .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (04) :455-479
[5]   TRANSLATION OPERATORS ON HALF-LINE [J].
COBURN, LA ;
DOUGLAS, RG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1969, 62 (04) :1010-&
[6]  
Duduchava R, 1979, INTEGRAL EQUATIONS F
[7]  
GOHBERG I, 1968, SOV MATH DOKL, V9, P1312
[8]  
Gohberg I., 1974, Convolution Equations and Projection Methods for Their Solution
[9]  
GOHBERG I, 1992, ONE DIMENSIONAL LINE, V1
[10]  
Hagen R., 1995, SPECTRAL THEORY APPR