Nonlinear Dirac equations on Riemann surfaces

被引:34
作者
Chen, Qun [2 ]
Jost, Juergen [1 ]
Wang, Guofang [3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Univ Magdeburg, Fac Math, D-39106 Magdeburg, Germany
基金
中国国家自然科学基金;
关键词
Dirac equation; regularity; energy identity;
D O I
10.1007/s10455-007-9084-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have developed analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We have provided the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 17 条
[1]  
AMMAN B, 2003, VARIATIONAL PROBLEM
[2]   The first conformal Dirac eigenvalue on 2-dimensional tori [J].
Ammann, B ;
Humbert, E .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) :623-642
[3]  
Bartnik RA, 2005, J REINE ANGEW MATH, V579, P13
[4]   Regularity theorems and energy identities for Dirac-harmonic maps [J].
Chen, Q ;
Jost, J ;
Li, JY ;
Wang, GF .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (01) :61-84
[5]  
CHEN Q, 2006, LIOUVILLE THEOREMS D
[6]   Dirac-harmonic maps [J].
Chen, Qun ;
Jost, Juergen ;
Li, Jiayu ;
Wang, Guofang .
MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) :409-432
[7]  
DING WY, 1996, COMMUN ANAL GEOM, V3, P543
[8]   On the spinor representation of surfaces in Euclidean 3-space [J].
Friedrich, T .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) :143-157
[9]  
Gilberg D., 1998, ELLIPTIC PARTIAL DIF
[10]  
Jost J, 1991, 2 DIMENSIONAL GEOMET