Simulation of bone strain by orthodontic implants using the finite element method

被引:8
作者
Gedrange, T
Bourauel, C
Köbel, C
Harzer, W [1 ]
机构
[1] Tech Univ Dresden, Poliklin Kieferorthopadie, D-8027 Dresden, Germany
[2] Univ Bonn, Poliklin Kieferorthopadie, D-5300 Bonn, Germany
来源
BIOMEDIZINISCHE TECHNIK | 2003年 / 48卷 / 10期
关键词
bone deformation; orthodontic implants; finite element method;
D O I
10.1515/bmte.2003.48.10.287
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Load direction of applied forces, implant geometry and other biomechanical parameters lead to varying reactions in the surrounding bone structure. Three types of endosseous implant measuring 9 mm in length and 3.3 mm in diameter with and without superperiosteal step, and a threaded surface were investigated with the aid of a finite element method using the COSMOS/M 2.5 program. The load on the implant was investigated under vertical, horizontal, and diagonal forces of between 0.01 N and 100N. Vertical loading of simple implants caused bone deformation of more than 600 peps. The application of the superperiosteal step clearly reduced the deformation. The largest deformations under vertical loading were observed in the trabecular bone with all 3 implant geometries. On horizontal loading the deformation shifted from the trabecular to the cortical bone and was particularly marked at the transition between the two. The smallest deformations, less than 300 peps, were measured at implants with a superperiosteal step under diagonal loading. The thread did not improve loading capacity. Implants with a superperiosteal step are recommended since they contribute to more rapid healing and strengthening of the bone.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 19 条
[1]   3-DIMENSIONAL STRESS-DISTRIBUTION AROUND A DENTAL IMPLANT AT DIFFERENT STAGES OF INTERFACE DEVELOPMENT [J].
BORCHERS, L ;
REICHART, P .
JOURNAL OF DENTAL RESEARCH, 1983, 62 (02) :155-159
[2]  
Donath K, 1992, J Dent Assoc S Afr, V47, P204
[3]  
Holmes D C, 1992, Int J Oral Maxillofac Implants, V7, P450
[4]   Einfluss der Implantatgeometrie auf die Strainverteilung im periimplantären KnochenThe influence of implant geometry on distribution of strain in bone implants [J].
Ulrich Joos ;
Dirk Vollmer ;
Johannes Kleinheinz .
Mund-, Kiefer- und Gesichtschirurgie, 2000, 4 (3) :143-147
[5]  
Kitoh M, 1978, Bull Tokyo Med Dent Univ, V25, P269
[6]   THE INFLUENCE OF THE BONE-IMPLANT INTERFACE STIFFNESS ON STRESS PROFILES SURROUNDING AL2O3 AND CARBON DENTAL IMPLANTS [J].
LAVERNIA, CJ ;
COOK, SD ;
WEINSTEIN, AM ;
KLAWITTER, JJ .
ANNALS OF BIOMEDICAL ENGINEERING, 1982, 10 (03) :129-138
[7]   AN ANALYSIS OF STRESSES IN A DENTAL IMPLANT SYSTEM [J].
LAVERNIA, CJ ;
COOK, SD ;
WEINSTEIN, AM ;
KLAWITTER, JJ .
JOURNAL OF BIOMECHANICS, 1981, 14 (08) :555-560
[8]   A COMPARISON OF METHODS TO ASSESS MARGINAL BONE HEIGHT AROUND ENDOSSEOUS IMPLANTS [J].
MEIJER, HJA ;
STEEN, WHA ;
BOSMAN, F .
JOURNAL OF CLINICAL PERIODONTOLOGY, 1993, 20 (04) :250-253
[9]   Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis [J].
Meyer, U ;
Vollmer, D ;
Runte, C ;
Bourauel, C ;
Joos, U .
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2001, 29 (02) :100-105
[10]   DETECTION OF ALKALINE AND ACID-PHOSPHATASES AROUND TITANIUM IMPLANTS - A LIGHT-MICROSCOPIC AND HISTOCHEMICAL-STUDY IN RABBITS [J].
PIATTELLI, A ;
SCARANO, A ;
PIATTELLI, M .
BIOMATERIALS, 1995, 16 (17) :1333-1338