Towards a Deep-Learning-Based Framework of Sentinel-2 Imagery for Automated Active Fire Detection

被引:27
作者
Zhang, Qi [1 ,2 ]
Ge, Linlin [2 ]
Zhang, Ruiheng [1 ]
Metternicht, Graciela Isabel [3 ]
Liu, Chang [2 ]
Du, Zheyuan [2 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
[2] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[3] Univ New South Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia
基金
中国博士后科学基金;
关键词
active fire detection; Sentinel-2; multi-spectral; deep learning; dataset; DETECTION ALGORITHM; PRODUCT; MODIS;
D O I
10.3390/rs13234790
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes an automated active fire detection framework using Sentinel-2 imagery. The framework is made up of three basic parts including data collection and preprocessing, deep-learning-based active fire detection, and final product generation modules. The active fire detection module is developed on a specifically designed dual-domain channel-position attention (DCPA)+HRNetV2 model and a dataset with semi-manually annotated active fire samples is constructed over wildfires that commenced on the east coast of Australia and the west coast of the United States in 2019-2020 for the training process. This dataset can be used as a benchmark for other deep-learning-based algorithms to improve active fire detection accuracy. The performance of active fire detection is evaluated regarding the detection accuracy of deep-learning-based models and the processing efficiency of the whole framework. Results indicate that the DCPA and HRNetV2 combination surpasses DeepLabV3 and HRNetV2 models for active fire detection. In addition, the automated framework can deliver active fire detection results of Sentinel-2 inputs with coverage of about 12,000 km(2) (including data download) in less than 6 min, where average intersections over union (IoUs) of 70.4% and 71.9% were achieved in tests over Australia and the United States, respectively. Concepts in this framework can be further applied to other remote sensing sensors with data acquisitions in SWIR-NIR-Red ranges and can serve as a powerful tool to deal with large volumes of high-resolution data used in future fire monitoring systems and as a cost-efficient resource in support of governments and fire service agencies that need timely, optimized firefighting plans.
引用
收藏
页数:15
相关论文
共 51 条
[1]  
[Anonymous], 2018, QGIS FREE OP SOURC G
[2]   A global wildfire dataset for the analysis of fire regimes and fire behaviour [J].
Artes, Tom S. ;
Oom, Duarte ;
De Rigo, Daniele ;
Durrant, Tracy Houston ;
Maianti, Pieralberto ;
Liberta, Giorgio ;
San-Miguel-Ayanz, Jesus .
SCIENTIFIC DATA, 2019, 6 (1)
[3]   An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites [J].
Bessho, Kotaro ;
Date, Kenji ;
Hayashi, Masahiro ;
Ikeda, Akio ;
Imai, Takahito ;
Inoue, Hidekazu ;
Kumagai, Yukihiro ;
Miyakawa, Takuya ;
Murata, Hidehiko ;
Ohno, Tomoo ;
Okuyama, Arata ;
Oyama, Ryo ;
Sasaki, Yukio ;
Shimazu, Yoshio ;
Shimoji, Kazuki ;
Sumida, Yasuhiko ;
Suzuki, Masuo ;
Taniguchi, Hidetaka ;
Tsuchiyama, Hiroaki ;
Uesawa, Daisaku ;
Yokota, Hironobu ;
Yoshida, Ryo .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (02) :151-183
[4]  
Bouzinac C, 2018, INT GEOSCI REMOTE SE, P4347, DOI 10.1109/IGARSS.2018.8518033
[5]   Color Image Analysis by Quaternion-Type Moments [J].
Chen, Beijing ;
Shu, Huazhong ;
Coatrieux, Gouenou ;
Chen, Gang ;
Sun, Xingming ;
Coatrieux, Jean Louis .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) :124-144
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[9]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[10]   Historical background and current developments for mapping burned area from satellite Earth observation [J].
Chuvieco, Emilio ;
Mouillot, Florent ;
van der Werf, Guido R. ;
San Miguel, Jesus ;
Tanase, Mihai ;
Koutsias, Nikos ;
Garcia, Mariano ;
Yebra, Marta ;
Padilla, Marc ;
Gitas, Ioannis ;
Heil, Angelika ;
Hawbaker, Todd J. ;
Giglio, Louis .
REMOTE SENSING OF ENVIRONMENT, 2019, 225 :45-64