Evaluation of beam shape coefficients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods

被引:39
作者
Machado Votto, Luiz Felipe [1 ]
Ambrosio, Leonardo Andre [1 ]
Gouesbet, Gerard [2 ,3 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Paulo, SP, Brazil
[2] Univ Rouen, Normandie Univ, CNRS, UMR 6614,CORIA, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
[3] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
关键词
Generalized Lorenz-Mie theories; Extended boundary condition method; T-matrix; Structured beams; Beam shape coefficients; Finite series; Quadratures; Localized approximations; Laguerre-Gauss beams; LORENZ-MIE THEORY; INTEGRAL LOCALIZED APPROXIMATION; ACOUSTIC RADIATION FORCE; BESSEL BEAMS; RIGOROUS JUSTIFICATION; LIGHT-SCATTERING; NON-VORTEX; VALIDITY; ORDER; TRANSFORMATIONS;
D O I
10.1016/j.jqsrt.2019.106618
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the framework of a series of papers devoted to warnings concerning the evaluation of beam shape coefficients (BSCs) of electromagnetic beams by using a localized approximation, a recent paper provided finite series explicit expressions to evaluate BSCs of paraxial Laguerre-Gauss freely propagating beam. In the present paper, these expressions are numerically implemented and finite series numerical results are compared with results obtained by using quadratures and a localized approximation. These three methods provide a remodeling of the beam, changing the non-Maxwellian paraxial Laguerre-Gauss beam to a beam which perfectly satisfies Maxwell's equations. Comparisons between the three methods are discussed in terms of accuracy and computational time efficiency. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 57 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]   On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces [J].
Ambrosio, Leonardo A. ;
Wang, Jiajie ;
Gouesbet, Gerard .
APPLIED OPTICS, 2017, 56 (19) :5377-5387
[4]   Assessing the validity of the localized approximation for discrete superpositions of Bessel beams [J].
Ambrosio, Leonardo Andre ;
Machado Vott, Lutz Felipe ;
Gouesbet, Gerard ;
Wang, Jiajie .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (11) :2690-2698
[5]   On localized approximations for Laguerre-Gauss beams focused by a lens [J].
Ambrosio, Leonardo Andre ;
Gouesbet, Gerard .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 218 :100-114
[6]   On the validity of the use of a localized approximation for helical beams. II. Numerical aspects [J].
Ambrosio, Leonardo Andre ;
Gouesbet, Gerard .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 215 :41-50
[7]  
Arfken G. B., 2005, MATH METHODS PHYS
[8]   The generalized Lorenz-Mie scattering theory and algorithm of Gaussian beam [J].
Bi Yi-ming ;
Wang Lian-fen ;
Li Yu-xin ;
Zhao Jian-gang .
INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: SPACE EXPLORATION TECHNOLOGIES AND APPLICATIONS, 2011, 8196
[9]   On the validity of integral localized approximation for on-axis zeroth-order Mathieu beams [J].
Chafiq, A. ;
Ambrosio, L. A. ;
Gouesbet, G. ;
Belafhal, A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 204 :27-34
[10]   Radiation pressure cross section exerted on homogenous dielectric spherical particle by zeroth order Mathieu beams [J].
Chafiq, A. ;
Belafhal, A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 179 :170-176