Dynamics of laser-induced cavitation bubbles near an elastic boundary

被引:336
作者
Brujan, EA [1 ]
Nahen, K [1 ]
Schmidt, P [1 ]
Vogel, A [1 ]
机构
[1] Med Laser Ctr Lubeck, D-23562 Lubeck, Germany
关键词
D O I
10.1017/S0022112000003347
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The interaction of a laser-induced cavitation bubble with an elastic boundary and its dependence on the distance between bubble and boundary are investigated experimentally. The elastic boundary consists of a transparent polyacrylamide (PAA) gel with 80% water concentration with elastic modulus E = 0.25 MPa. At this E-value, the deformation and rebound of the boundary is very pronounced providing particularly interesting features of bubble dynamics. It is shown by means of highspeed photography with up to 5 million frames s(-1) that bubble splitting, formation of liquid jets away from and towards the boundary, and jet-like ejection of the boundary material into the Liquid are the main features of this interaction. The maximum liquid jet velocity measured was 960m s(-1). Such high-velocity jets penetrate the elastic boundary even through a water layer of 0.35 mm thickness. The jetting behaviour arises from the interaction between the counteracting forces induced by the rebound of the elastic boundary and the Bjerknes attraction force towards the boundary. General principles of the formation of annular and axial jets are discussed which allow the interpretation of the complex dynamics. The concept of the Kelvin impulse is examined with regard to bubble migration and jet formation. The results are discussed with respect to cavitation erosion: collateral damage in laser surgery, and cavitation-mediated enhancement of pulsed laser ablation of tissue.
引用
收藏
页码:251 / 281
页数:31
相关论文
共 51 条
[1]   COLLAPSE OF CAVITATION BUBBLES AND PRESSURES THEREBY PRODUCED AGAINST SOLID BOUNDARIES [J].
BENJAMIN, TB ;
ELLIS, AT .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 260 (1110) :221-&
[2]   EXPLOSIVES WITH LINED CAVITIES [J].
BIRKHOFF, G ;
MACDOUGALL, DP ;
PUGH, EM ;
TAYLOR, G .
JOURNAL OF APPLIED PHYSICS, 1948, 19 (06) :563-582
[3]  
BLAKE JR, 1987, ANNU REV FLUID MECH, V19, P99, DOI 10.1146/annurev.fl.19.010187.000531
[4]   TRANSIENT CAVITIES NEAR BOUNDARIES .2. FREE-SURFACE [J].
BLAKE, JR ;
TAIB, BB ;
DOHERTY, G .
JOURNAL OF FLUID MECHANICS, 1987, 181 :197-212
[5]   The art, craft and science of modelling jet impact in a collapsing cavitation bubble [J].
Blake, JR ;
Tomita, Y ;
Tong, RP .
APPLIED SCIENTIFIC RESEARCH, 1998, 58 (1-4) :77-90
[6]   TRANSIENT CAVITIES NEAR BOUNDARIES .1. RIGID BOUNDARY [J].
BLAKE, JR ;
TAIB, BB ;
DOHERTY, G .
JOURNAL OF FLUID MECHANICS, 1986, 170 :479-497
[7]   INTERACTION OF 2 CAVITATION BUBBLES WITH A RIGID BOUNDARY [J].
BLAKE, JR ;
ROBINSON, PB ;
SHIMA, A ;
TOMITA, Y .
JOURNAL OF FLUID MECHANICS, 1993, 255 :707-721
[8]   Collapsing cavities, toroidal bubbles and jet impact [J].
Blake, JR ;
Hooton, MC ;
Robinson, PB ;
Tong, RP .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1724) :537-550
[9]   DEFORMATION OF SOLIDS BY LIQUID IMPACT AT SUPERSONIC SPEEDS [J].
BOWDEN, FP ;
BRUNTON, JH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1961, 263 (1312) :433-+