Applications of Photonic Crystal Nanobeam Cavities for Sensing

被引:65
作者
Qiao, Qifeng [1 ,2 ,3 ]
Xia, Ji [1 ]
Lee, Chengkuo [2 ,3 ]
Zhou, Guangya [1 ,3 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117579, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Natl Univ Singapore, CISM, Singapore 117608, Singapore
基金
新加坡国家研究基金会;
关键词
photonic crystal cavity; photonic crystal nanobeam cavity; optical sensor; refractive index sensor; nanoparticle sensor; optomechanical sensor; temperature sensor; WHISPERING-GALLERY MODES; FABRY-PEROT MICROCAVITY; HIGH-QUALITY FACTOR; SILICON WAVE-GUIDE; REFRACTIVE-INDEX; TEMPERATURE SENSOR; LABEL-FREE; PROTEIN-DETECTION; DESIGN; SENSITIVITY;
D O I
10.3390/mi9110541
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In recent years, there has been growing interest in optical sensors based on microcavities due to their advantages of size reduction and enhanced sensing capability. In this paper, we aim to give a comprehensive review of the field of photonic crystal nanobeam cavity-based sensors. The sensing principles and development of applications, such as refractive index sensing, nanoparticle sensing, optomechanical sensing, and temperature sensing, are summarized and highlighted. From the studies reported, it is demonstrated that photonic crystal nanobeam cavities, which provide excellent light confinement capability, ultra-small size, flexible on-chip design, and easy integration, offer promising platforms for a range of sensing applications.
引用
收藏
页数:31
相关论文
共 157 条
[41]   High-Q double-disk microcavities for cavity optomechanics [J].
Jiang, Xiaoshun ;
Lin, Qiang ;
Rosenberg, Jessie ;
Vahala, Kerry ;
Painter, Oskar .
OPTICS EXPRESS, 2009, 17 (23) :20911-20919
[42]  
Joannopoulos J. D., 2011, Photonic Crystals: Molding the Flow of Light
[43]   Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J].
Johnson, SG ;
Joannopoulos, JD .
OPTICS EXPRESS, 2001, 8 (03) :173-190
[44]   Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap [J].
Johnson, SG ;
Fan, S ;
Mekis, A ;
Joannopoulos, JD .
APPLIED PHYSICS LETTERS, 2001, 78 (22) :3388-3390
[45]   MRI-Guided Focused Ultrasound Surgery [J].
Jolesz, Ferenc A. .
ANNUAL REVIEW OF MEDICINE, 2009, 60 :417-430
[46]   Temperature stabilization of optofluidic photonic crystal cavities [J].
Karnutsch, Christian ;
Smith, Cameron L. C. ;
Graham, Alexandra ;
Tomljenovic-Hanic, Snjezana ;
McPhedran, Ross ;
Eggleton, Benjamin J. ;
O'Faolain, Liam ;
Krauss, Thomas F. ;
Xiao, Sanshui ;
Mortensen, N. Asger .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[47]   Nonlinear optomechanical paddle nanocavities [J].
Kaviani, Hamidreza ;
Healey, Chris ;
Wu, Marcelo ;
Ghobadi, Roohollah ;
Hryciw, Aaron ;
Barclay, Paul E. .
OPTICA, 2015, 2 (03) :271-274
[48]   Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process [J].
Kim, Gun-Duk ;
Lee, Hak-Soon ;
Park, Chang-Hyun ;
Lee, Sang-Shin ;
Lim, Boo Tak ;
Bae, Hee Kyoung ;
Lee, Wan-Gyu .
OPTICS EXPRESS, 2010, 18 (21) :22215-22221
[49]   Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range [J].
Kim, Hyun-Tae ;
Yu, Miao .
OPTICS EXPRESS, 2016, 24 (09) :9501-9510
[50]   Cavity opto-mechanics [J].
Kippenberg, Tobias J. ;
Vahala, Kerry J. .
OPTICS EXPRESS, 2007, 15 (25) :17172-17205