Identification of two-phase flow regime using ultrasonic phased array

被引:35
作者
Fang, Lide [1 ,2 ]
Zeng, Qiaoqiao [1 ,2 ]
Wang, Fan [1 ,2 ]
Faraj, Yousef [3 ,4 ]
Zhao, Yuyang [5 ]
Lang, Yuexin [1 ]
Wei, Zihui [1 ,2 ]
机构
[1] Hebei Univ, Coll Qual & Tech Supervis, Baoding 071000, Hebei, Peoples R China
[2] Natl & Local Joint Engn Res Ctr Metrol Instrument, Baoding 071000, Hebei, Peoples R China
[3] Univ Chester, Sch Sci & Engn, Dept Chem Engn, Chester CH2 4NU, Cheshire, England
[4] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[5] Hebei Univ Sci & Technol, Sch Elect Engn, Shijiazhuang 07100, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultrasonic phased array; Image processing; Flow regime identification; PATTERN;
D O I
10.1016/j.flowmeasinst.2020.101726
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Flow regime is one of the key characteristics of gas-liquid two-phase pipe-flows and its identification is essential for several industrial applications. In this paper, the ultrasonic phased array technology is used to identify flow regimes of two-phase (air-water) vertical flow. The ultrasonic phased array can perform multi-point, omnidirectional detection to obtain high-resolution data suitable for image processing. The scanned images, which have distinctive features, are subjected to a series of image-treatment techniques, such as principle component analysis, to extract information necessary for flow regime identification. The K-nearest neighbors (KNN) classification algorithm is then used to identify flow regimes with high accuracy.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
Anas F., 2016, J ENG SUSTAIN DEV, P1
[2]  
Batsaikhan M, 2017, THEOR APPL MECH LETT, V7, P379, DOI 10.1016/j.taml.2017.09.014
[3]   Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals [J].
Chakraborty, Subhadeep ;
Keller, Eric ;
Talley, Justin ;
Srivastav, Abhishek ;
Ray, Asok ;
Kim, Seungjin .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (02)
[4]   The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows [J].
Figueiredo, M. M. F. ;
Goncalves, J. L. ;
Nakashima, A. M. V. ;
Fileti, A. M. F. ;
Carvalho, R. D. M. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 70 :29-50
[5]  
[顾建飞 Gu Jianfei], 2016, [工程热物理学报, Journal of Engineering Thermophysics], V37, P785
[6]  
Jun H.A., 2002, SPACE MED MED ENG, V2, P15
[7]   Cavitation Damage Prediction on Dam Spillways using Fuzzy-KNN Modeling [J].
Kermani, E. Fadaei ;
Barani, G. A. ;
Hessaroeyeh, M. Ghaeini .
JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 (02) :323-329
[8]   基于随机kNN图的批量边删除聚类算法 [J].
雷小锋 ;
陈皎 ;
毛善君 ;
谢昆青 .
软件学报, 2018, 29 (12) :3764-3785
[9]   Gas-liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe [J].
Liang, Fachun ;
Zheng, Hongfeng ;
Yu, Hao ;
Sun, Yuan .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (03)
[10]   Automated measurements of lumbar lordosis in T2-MR images using decision tree classifier and morphological image processing [J].
Masad, Ihssan S. ;
Al-Fahoum, Amjed ;
Abu-Qasmieh, Isam .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2019, 22 (04) :1027-1034