Fully-automated atrophy segmentation in dry age-related macular degeneration in optical coherence tomography

被引:18
作者
Derradji, Yasmine [1 ]
Mosinska, Agata [2 ]
Apostolopoulos, Stefanos [2 ]
Ciller, Carlos [2 ]
De Zanet, Sandro [2 ]
Mantel, Irmela [1 ]
机构
[1] Univ Lausanne, Jules Gonin Eye Hosp, Fdn Asile de Aveugles, Dept Ophthalmol, 15 Ave France, CH-1004 Lausanne, Switzerland
[2] RetinAl Med AG, Freiburgstr 3, CH-3010 Bern, Switzerland
关键词
GEOGRAPHIC ATROPHY; QUANTIFICATION; PREDICTION; FLUID;
D O I
10.1038/s41598-021-01227-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Age-related macular degeneration (AMD) is a progressive retinal disease, causing vision loss. A more detailed characterization of its atrophic form became possible thanks to the introduction of Optical Coherence Tomography (OCT). However, manual atrophy quantification in 3D retinal scans is a tedious task and prevents taking full advantage of the accurate retina depiction. In this study we developed a fully automated algorithm segmenting Retinal Pigment Epithelial and Outer Retinal Atrophy (RORA) in dry AMD on macular OCT. 62 SD-OCT scans from eyes with atrophic AMD (57 patients) were collected and split into train and test sets. The training set was used to develop a Convolutional Neural Network (CNN). The performance of the algorithm was established by cross validation and comparison to the test set with ground-truth annotated by two graders. Additionally, the effect of using retinal layer segmentation during training was investigated. The algorithm achieved mean Dice scores of 0.881 and 0.844, sensitivity of 0.850 and 0.915 and precision of 0.928 and 0.799 in comparison with Expert 1 and Expert 2, respectively. Using retinal layer segmentation improved the model performance. The proposed model identified RORA with performance matching human experts. It has a potential to rapidly identify atrophy with high consistency.
引用
收藏
页数:11
相关论文
共 31 条
  • [1] Apostolopoulos Stefanos, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P294, DOI 10.1007/978-3-319-66179-7_34
  • [2] Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging
    Bogunovic, Hrvoje
    Montuoro, Alessio
    Baratsits, Magdalena
    Karantonis, Maria G.
    Waldstein, Sebastian M.
    Schlanitz, Ferdinand
    Schmidt-Erfurth, Ursula
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (06) : BIO141 - BIO150
  • [3] Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
  • [4] Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks
    Burlina, Philippe M.
    Joshi, Neil
    Pekala, Michael
    Pacheco, Katia D.
    Freund, David E.
    Bressler, Neil M.
    [J]. JAMA OPHTHALMOLOGY, 2017, 135 (11) : 1170 - 1176
  • [5] Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images
    Chiu, Stephanie J.
    Izatt, Joseph A.
    O'Connell, Rachelle V.
    Winter, Katrina P.
    Toth, Cynthia A.
    Farsiu, Sina
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (01) : 53 - 61
  • [6] Clinically applicable deep learning for diagnosis and referral in retinal disease
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Tomasev, Nenad
    Blackwell, Sam
    Askham, Harry
    Glorot, Xavier
    O'Donoghue, Brendan
    Visentin, Daniel
    van den Driessche, George
    Lakshminarayanan, Balaji
    Meyer, Clemens
    Mackinder, Faith
    Bouton, Simon
    Ayoub, Kareem
    Chopra, Reena
    King, Dominic
    Karthikesalingam, Alan
    Hughes, Cian O.
    Raine, Rosalind
    Hughes, Julian
    Sim, Dawn A.
    Egan, Catherine
    Tufail, Adnan
    Montgomery, Hugh
    Hassabis, Demis
    Rees, Geraint
    Back, Trevor
    Khaw, Peng T.
    Suleyman, Mustafa
    Cornebise, Julien
    Keane, Pearse A.
    Ronneberger, Olaf
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1342 - +
  • [7] Automated segmentation of geographic atrophy of the retinal epithelium via random forests in AREDS color fundus images
    Feeny, Albert K.
    Tadarati, Mongkol
    Freund, David E.
    Bressler, Neil M.
    Burlina, Philippe
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 65 : 124 - 136
  • [8] The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration
    Fleckenstein, Monika
    Mitchell, Paul
    Freund, K. Bailey
    Sadda, SriniVas
    Holz, Frank G.
    Brittain, Christopher
    Henry, Erin C.
    Ferrara, Daniela
    [J]. OPHTHALMOLOGY, 2018, 125 (03) : 369 - 390
  • [9] Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration Classification of Atrophy Meeting Report 4
    Guymer, Robyn H.
    Rosenfeld, Philip J.
    Curcio, Christine A.
    Holz, Frank G.
    Staurenghi, Giovanni
    Freund, K. Bailey
    Schmitz-Valckenberg, Steffen
    Sparrow, Janet
    Spaide, Richard F.
    Tufail, Adnan
    Chakravarthy, Usha
    Jaffe, Glenn J.
    Csaky, Karl
    Sarraf, David
    Mones, Jordi M.
    Tadayoni, Ramin
    Grunwald, Juan
    Bottoni, Ferdinando
    Liakopoulos, Sandra
    Pauleikhoff, Daniel
    Pagliarini, Sergio
    Chew, Emily Y.
    Viola, Francesco
    Fleckenstein, Monika
    Blodi, Barbara A.
    Lim, Tock Han
    Chong, Victor
    Lutty, Jerry
    Bird, Alan C.
    Sadda, Srinivas R.
    [J]. OPHTHALMOLOGY, 2020, 127 (03) : 394 - 409
  • [10] Segmentation of the Geographic Atrophy in Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence Images
    Hu, Zhihong
    Medioni, Gerard G.
    Hernandez, Matthias
    Hariri, Amirhossein
    Wu, Xiaodong
    Sadda, SriniVas R.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (13) : 8375 - 8383