We consider a magnetic moment with an easy axis anisotropy energy, switched by an external field applied along this axis. Additional small, time-independent bias field is applied perpendicular to the axis. It is found that the magnet's switching time is a non-monotonic function of the rate at which the field is swept from "up" to "down." Switching time exhibits a minimum at a particular optimal sweep time. This unusual behavior is explained by the admixture of a ballistic (precessional) rotation of the moment caused by the perpendicular bias field in the presence of a variable switching field. We derive analytic expressions for the optimal switching time, and for the entire dependence of the switching time on the field sweep time. The existence of the optimal field sweep time has important implications for the optimization of magnetic memory devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3570635]
机构:
Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
Wang, X. R.
;
Sun, Z. Z.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
机构:
Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
Wang, X. R.
;
Sun, Z. Z.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China