EEG BASED VISUAL CLASSIFICATION WITH MULTI-FEATURE JOINT LEARNING

被引:2
作者
Ma, Xin [1 ]
Duan, Yiping [1 ]
Hu, Shuzhan [1 ]
Tao, Xiaoming [1 ]
Ge, Ning [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Visual classification; EEG; Convolutional Neural Network; Wavelet; Joint learning;
D O I
10.1109/ICIP42928.2021.9506633
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With a significant boost in neuroscience and artificial intelligence, decoding the process of human vision has become a hot topic in the last few decades. Although many existing deep learning models are employed to explore and solve mysteries of human brain activity, the accuracy and reliability of the visual classification task based on electroencephalography (EEG) still have space for promotion. In our research, we design the experiments to collect the subjects' EEG data when they are watching the different types of images. In this way, an image-EEG dataset corresponding to 80 ImageNet object classes was constructed. Afterward, we proposed a dual-EEGNet for joint feature learning for multi-category visual classification. Especially, one branch EEGNet is used to extract the spatio-temporal embeddings of EEG signals, and the other branch is used to extract the time-frequency embeddings of EEG signals. The experimental results demonstrate that EEG signals can reflect the human brain activity and distinguish the different types of images. Moreover, the proposed model with joint features has a better classification performance in terms of accuracy compared with other methods.
引用
收藏
页码:264 / 268
页数:5
相关论文
共 21 条
[1]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[2]   Emotions Recognition Using EEG Signals: A Survey [J].
Alarcao, Soraia M. ;
Fonseca, Manuel J. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, 10 (03) :374-393
[3]   Brain Activity-Based Image Classification From Rapid Serial Visual Presentation [J].
Bigdely-Shamlo, Nima ;
Vankov, Andrey ;
Ramirez, Rey R. ;
Makeig, Scott .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (05) :432-441
[4]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[5]   Fast readout of object identity from macaque inferior temporal cortex [J].
Hung, CP ;
Kreiman, G ;
Poggio, T ;
DiCarlo, JJ .
SCIENCE, 2005, 310 (5749) :863-866
[6]   Human gamma-frequency oscillations associated with attention and memory [J].
Jensen, Ole ;
Kaiser, Jochen ;
Lachaux, Jean-Philippe .
TRENDS IN NEUROSCIENCES, 2007, 30 (07) :317-324
[7]   A Representational Similarity Analysis of the Dynamics of Object Processing Using Single-Trial EEG Classification [J].
Kaneshiro, Blair ;
Guimaraes, Marcos Perreau ;
Kim, Hyung-Suk ;
Norcia, Anthony M. ;
Suppes, Patrick .
PLOS ONE, 2015, 10 (08)
[8]   EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces [J].
Lawhern, Vernon J. ;
Solon, Amelia J. ;
Waytowich, Nicholas R. ;
Gordon, Stephen M. ;
Hung, Chou P. ;
Lance, Brent J. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (05)
[9]   An EEG-Based Study on Perception of Video Distortion Under Various Content Motion Conditions [J].
Liu, Xiwen ;
Tao, Xiaoming ;
Xu, Mai ;
Zhan, Yafeng ;
Lu, Jianhua .
IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (04) :949-960
[10]  
Moller S, 2014, T-LAB SER TELECOMMUN, P1, DOI 10.1007/978-3-319-02681-7